相关习题
 0  236673  236681  236687  236691  236697  236699  236703  236709  236711  236717  236723  236727  236729  236733  236739  236741  236747  236751  236753  236757  236759  236763  236765  236767  236768  236769  236771  236772  236773  236775  236777  236781  236783  236787  236789  236793  236799  236801  236807  236811  236813  236817  236823  236829  236831  236837  236841  236843  236849  236853  236859  236867  266669 

科目: 来源: 题型:填空题

5.将正整数12分解成两个正整数的乘积有1×12,2×6,3×4三种,其中3×4是这三种分解中两数差的绝对值最小的,我们称3×4为12的最佳分解.当p×q(p≤q且pq∈N*,)是正整数n的最佳分解时,我们定义函数f(n)=q-p,例如f(12)=4-3=1.数列{f(3n)}的前100项和为350-1.

查看答案和解析>>

科目: 来源: 题型:填空题

4.对于函数g(x)=$\left\{\begin{array}{l}{sinπx,x∈(2,+∞)}\\{2g(x+2),x∈(0,2]}\end{array}\right.$,若关于x的方程g(x)=n(n>0)有且只有两个不同的实根x1,x2,则x1+x2=1.

查看答案和解析>>

科目: 来源: 题型:解答题

3.在三棱柱ABCA1B1C1中,侧面ABB1A1为矩形,AB=3,AA1=3$\sqrt{2}$,D为AA1的中点,BD与AB1交于点O,CO⊥侧面ABB1A1
(Ⅰ)证明:BC⊥AB1
(Ⅱ)若OC=OA,求二面角A1-AC-B的余弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

2.设函数f'(x)是函数f(x)(x∈R)的导函数,f(0)=1,且$f(x)=\frac{1}{3}f'(x)-1$,则4f(x)>f'(x)的解集为(  )
A.$(\frac{ln4}{3},+∞)$B.$(\frac{ln2}{3},+∞)$C.$(\frac{{\sqrt{3}}}{2},+∞)$D.$(\frac{{\sqrt{e}}}{3},+∞)$

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图甲所示,BO是梯形ABCD的高,∠BAD=45°,OB=BC=1,AD=3BC,现将等腰梯形ABCD沿OB折起如图乙所示的四棱锥P-OBCD,且PC=$\sqrt{3}$,点E是线段OP的中点.

(1)证明:OP⊥CD;
(2)在图中作出平面CDE与PB交点Q,并求线段QD的长度.

查看答案和解析>>

科目: 来源: 题型:填空题

20.若单位向量$\overrightarrow{e_1},\overrightarrow{e_2}$满足$|2\overrightarrow{e_1}+\overrightarrow{e_2}|=|\overrightarrow{e_1}|$,则$\overrightarrow{e_1}$在$\overrightarrow{e_2}$方向上投影为-1.

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,在边长为4的正方形ABCD中,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′.
(Ⅰ)点E是AB的中点,点F是BC的中点,求证:平面A′ED⊥平面A′FD;
(Ⅱ)当BE=BF=$\frac{1}{4}$BC,求三棱锥A′-EFD的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知圆O的半径为2,它的内接三角形ABC满足c2-a2=4($\sqrt{3}$c-b)sinB,其中a,b,c分别为角A,B,C的对边.
(Ⅰ)求角A;
(Ⅱ)求三角形ABC面积S的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知$\overrightarrow{a}$=(3,-1),$\overrightarrow{a}$•$\overrightarrow{b}$=-5,$\overrightarrow{c}$=x$\overrightarrow{a}$+(1-x)$\overrightarrow{b}$.
(Ⅰ)若$\overrightarrow{a}$⊥$\overrightarrow{c}$,求实数x的值;
(Ⅱ)若|$\overrightarrow{b}$|=$\sqrt{5}$,求|$\overrightarrow{c}$|的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知f(x)=lnx-x+1+a,g(x)=x2ex(e为自然对数的底数),若对任意的x1∈[$\frac{1}{e}$,1],总存在x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是$\frac{1}{e}$≤a≤e.

查看答案和解析>>

同步练习册答案