相关习题
 0  236680  236688  236694  236698  236704  236706  236710  236716  236718  236724  236730  236734  236736  236740  236746  236748  236754  236758  236760  236764  236766  236770  236772  236774  236775  236776  236778  236779  236780  236782  236784  236788  236790  236794  236796  236800  236806  236808  236814  236818  236820  236824  236830  236836  236838  236844  236848  236850  236856  236860  236866  236874  266669 

科目: 来源: 题型:解答题

6.化简下列各式:
(1)sin2αcos2α+cos4α+sin2α;
(2)$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$(α为第二象限角).

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),与y轴的正半轴交于点P(0,b),右焦点F(c,0),O为坐标原点,且tan∠PFO=$\frac{\sqrt{2}}{2}$.
(1)求椭圆的离心率e;
(2)已知点M(1,0),N(3,2),过点M任意作直线l与椭圆C交于C,D两点,设直线CN,DN的斜率k1,k2,若k1+k2=2,试求椭圆C的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知点A(-1,1),B(1,2),C(-2,-1),D(2,2),则向量$\overrightarrow{AB}$在$\overrightarrow{CD}$方向上的投影为$\frac{11}{5}$.

查看答案和解析>>

科目: 来源: 题型:选择题

3.过点M(0,1)和N(-1,m2)(m∈R)的直线的倾斜角α的取值范围是(  )
A.0°≤α<180°B.45°≤α<180°
C.0°≤α≤45°或90°<α<180°D.0°≤α≤45°或90°≤α<180°

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知命题p:“?x∈[0,1],x2-a≤0”,命题q:“$\frac{2{x}^{2}}{a}$+$\frac{{y}^{2}}{a-1}$=1是焦点在x轴上的椭圆的标准方程”,若命题“p∧q”是真命题,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知直线y=ax是曲线y=lnx的切线,则实数a=(  )
A.$\frac{1}{2}$B.$\frac{1}{2e}$C.$\frac{1}{e}$D.$\frac{1}{{e}^{2}}$

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y+6≥0}\\{x≤3}\\{x+y+k≥0}\end{array}\right.$,且z=2x+4y的最小值为2,则常数k=(  )
A.2B.-2C.6D.3

查看答案和解析>>

科目: 来源: 题型:解答题

8.若关于x的不等式|3x+2|+|3x-1|-t≥0的解集为R,记实数t的最大值为a.
(1)求a;
(2)若正实数m,n满足4m+5n=a,求$y=\frac{1}{m+2n}+\frac{4}{3m+3n}$的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.极坐标系与直角坐标系xOy取相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为$\left\{{\begin{array}{l}{x=1+t}\\{y=\sqrt{3}t}\end{array}(t}\right.$为参数).曲线C的极坐标方程为$ρ=\frac{{\sqrt{2}}}{{\sqrt{1+si{n^2}θ}}}$.
(1)求直线l的倾斜角和曲线C的直角坐标方程;
(2)设直线C与曲线C交于A,B两点,与x轴的交点为M,求$\frac{1}{{|{AM}|}}+\frac{1}{{|{BM}|}}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图(1)所示,在直角梯形ABCD中,$AD∥BC,∠BAD=\frac{π}{2},AB=BC=\frac{1}{2}AD$,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图(2)所示.

(1)证明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案