相关习题
 0  236693  236701  236707  236711  236717  236719  236723  236729  236731  236737  236743  236747  236749  236753  236759  236761  236767  236771  236773  236777  236779  236783  236785  236787  236788  236789  236791  236792  236793  236795  236797  236801  236803  236807  236809  236813  236819  236821  236827  236831  236833  236837  236843  236849  236851  236857  236861  236863  236869  236873  236879  236887  266669 

科目: 来源: 题型:选择题

16.对变量x,y有观测数据(xi,yi)(i=1,2,…,10),得散点图(1);对变量u,v,有观测数据(ui,vi)(i=1,2,…,10),得散点图(2),由这两个散点图可以判断(  )
A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关
C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关

查看答案和解析>>

科目: 来源: 题型:选择题

15.某校共有高一、高二、高三学生1290人,其中高一480人,高二比高三多30人,为了解该校学生的身体健康情况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生96人,则该样本中的高二学生人数为(  )
A.84B.78C.81D.96

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知△ABC的内角A、B、C的对边分别为a、b、c,且3bcos A=ccos A+acosC.
(1)求tanA的值;
(2)若a=4$\sqrt{2}$,求△ABC的面积的最大值.

查看答案和解析>>

科目: 来源: 题型:选择题

13.在如图所示的程序框图中,若输入的m=98,n=63,则输出的结果为(  )
A.9B.8C.7D.6

查看答案和解析>>

科目: 来源: 题型:选择题

12.定义在R上的偶函数f(x)的导函数为f'(x),若对任意的实数x,都有2f(x)+xf'(x)<2恒成立,则使x2f(x)-4f(2)<x2-4成立的实数x的取值范围是(  )
A.(-∞,-2)∪(2,+∞)B.(-2,0)∪(0,2)C.{x|x≠±2}D.(-2,2)

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知焦点在y轴上的双曲线C的中心是原点O,离心率等于$\frac{{\sqrt{5}}}{2}$,以双曲线C的一个焦点为圆心,2为半径的圆与双曲线C的渐近线相切,则双曲线C的方程为(  )
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{y^2}{4}-{x^2}=1$C.${y^2}-\frac{x^2}{4}=1$D.$\frac{y^2}{16}-\frac{x^2}{4}=1$

查看答案和解析>>

科目: 来源: 题型:选择题

10.若函数$f(x)={x^2}+ax+\frac{1}{x}$在$({\frac{1}{2}\;\;,\;\;1})$内任取两个实数p,q,且p≠q,不等式$\frac{f(p)-f(q)}{p-q}>0$恒成立,则a的取值范围是(  )
A.[-1,0]B.[-1,+∞)C.[0,3]D.[3,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

9.在长方体ABCD-A1B1C1D1中,AB=BC=4,AA1=2,则直线BC1与平面BB1D1D所成角的正弦值为(  )
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{2\sqrt{5}}}{5}$C.$\frac{{\sqrt{15}}}{5}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

8.在△ABC中,若b=3,A=120°,三角形的面积$S=\frac{9}{4}\sqrt{3}$,则三角形外接圆的半径为(  )
A.$\frac{2}{3}\sqrt{3}$B.3C.$\frac{4}{3}\sqrt{3}$D.6

查看答案和解析>>

科目: 来源: 题型:选择题

7.某几何体的三视图如图所示,图中的四边形都是边长为1的正方体,两条虚线互相垂直,则该几何体的体积是(  )
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$1-\frac{π}{6}$D.$1-\frac{π}{3}$

查看答案和解析>>

同步练习册答案