相关习题
 0  236749  236757  236763  236767  236773  236775  236779  236785  236787  236793  236799  236803  236805  236809  236815  236817  236823  236827  236829  236833  236835  236839  236841  236843  236844  236845  236847  236848  236849  236851  236853  236857  236859  236863  236865  236869  236875  236877  236883  236887  236889  236893  236899  236905  236907  236913  236917  236919  236925  236929  236935  236943  266669 

科目: 来源: 题型:解答题

19.已知函数$f(x)=x+\frac{a}{x}-2lnx$.
(1)当a=0时,求f(x)在点(1,f(1))处的切线方程;
(2)是否存在实数a,当0<x≤2时,函数f(x)图象上的点都在$\left\{\begin{array}{l}0<x≤2\\ x-y≥0\end{array}\right.$所表示的平面区域(含边界)?若存在,求出a的值组成的集合;否则说明理由;
(3)若f(x)有两个不同的极值点m,n(m>n),求过两点M(m,f(m)),N(n,f(n))的直线的斜率的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知在三棱柱ABC-A1B1C1中,B1B⊥平面ABC,∠ABC=90°,B1B=AB=2BC=4,D、E分别是B1C1,A1A的中点.
(1)求证:A1D∥平面B1CE;
(2)设M是的中点,N在棱AB上,且BN=1,P是棱AC上的动点,直线NP与平面MNC所成角为θ,试问:θ的正弦值存在最大值吗?若存在,请求出$\frac{AP}{AC}$的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

17.若直线l过抛物线x2=-8y的焦点F,且与双曲线$\frac{x^2}{9}-\frac{y^2}{3}=1$在一、三象限的渐近线平行,则直线l截圆${({x-4\sqrt{3}})^2}+{y^2}=4$所得的弦长为2.

查看答案和解析>>

科目: 来源: 题型:填空题

16.设函数$f(x)=\left\{\begin{array}{l}\int_1^e{\frac{1}{t}dt,x>\sqrt{2}}\\ \frac{1}{3},x≤\sqrt{2}\end{array}\right.$,若$f({x_0})>\frac{1}{2}$,则x0的取值范围为x0>$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.
(1)求曲线C的方程;
(2)过点M(m,0)(m>0)任作一条直线与曲线C交于A,B两点,点N(n,0),连接AN,BN,且m+n=0.求证:∠ANM=∠BNM.

查看答案和解析>>

科目: 来源: 题型:填空题

14.在平面直角坐标系xOy中,曲线x2+y2=2|x|+2|y|围成的图形的面积为6π+8.

查看答案和解析>>

科目: 来源: 题型:填空题

13.已知在平面直角坐标系xOy中,抛物线x2=2y的焦点为F,M(3,5),点Q在抛物线上,则|MQ|+|QF|的最小值为$\frac{11}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知双曲线x2-my2=1的虚轴长是实轴长的两倍,则实数m的值是$\frac{1}{4}$.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的上顶点M与左、右焦点F1,F2构成三角形MF1F2面积为$\sqrt{3}$,又椭圆C的离心率为$\frac{{\sqrt{3}}}{2}$,左右顶点分别为P,Q.
(1)求椭圆C的方程;
(2)过点D(m,0)(m∈(-2,2),m≠0)作两条射线分别交椭圆C于A,B两点(A,B在长轴PQ同侧),直线AB交长轴于点S(n,0),且有∠ADP=∠BDQ.求证:mn为定值;
(3)椭圆C的下顶点为N,过点T(t,2)(t≠0)的直线TM,TN分别与椭圆C交于E,F两点.若△TMN的面积是△TEF的面积的λ倍,求λ的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知⊙C:x2+y2-2x-4y-20=0,直线l:(2m+1)x+(m+1)y-7m-4=0.
(1)求证:直线l与⊙C恒有两个交点;
(2)若直线l与⊙C的两个不同交点分别为A,B.求线段AB中点P的轨迹方程,并求弦AB的最小值.

查看答案和解析>>

同步练习册答案