相关习题
 0  236750  236758  236764  236768  236774  236776  236780  236786  236788  236794  236800  236804  236806  236810  236816  236818  236824  236828  236830  236834  236836  236840  236842  236844  236845  236846  236848  236849  236850  236852  236854  236858  236860  236864  236866  236870  236876  236878  236884  236888  236890  236894  236900  236906  236908  236914  236918  236920  236926  236930  236936  236944  266669 

科目: 来源: 题型:选择题

9.若x、y满足$\left\{\begin{array}{l}{x+y-\sqrt{2}≤0}\\{x-y+\sqrt{2}≥0}\\{y≥0}\end{array}\right.$,则对于z=2x-y(  )
A.在$({-\sqrt{2},0})$处取得最大值B.在$({0,\sqrt{2}})$处取得最大值
C.在$({\sqrt{2},0})$处取得最大值D.无最大值

查看答案和解析>>

科目: 来源: 题型:填空题

8.在侧棱长为$2\sqrt{3}$的正三棱锥S-ABC中,∠ASB=∠BSC=∠CSA=40°,过A作截面AMN,交SB于M,交SC于N,则截面AMN周长的最小值为6.

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知函数f(x)是定义域R在上的奇函数,且在区间[0,+∞)单调递增,若实数a满足f(log2a)+f(log2$\frac{1}{a}$)≤2f(1),则a的取值范围是(  )
A.(-∞,2]B.$({0,\frac{1}{2}}]$C.$[{\frac{1}{2},2}]$D.(0,2]

查看答案和解析>>

科目: 来源: 题型:选择题

6.设m、n是两条不同的直线,α、β、γ是三个不同的平面,给出下列四个命题,其中正确命题的序号是(  )
①若m⊥α,n⊥α,则m⊥n;
②若α∥β,β∥γ,m⊥α,则m⊥γ;
③若m∥α,n∥α,则m∥n;
④若α⊥γ,β⊥γ,则α⊥β.
A.B.②③C.③④D.①④

查看答案和解析>>

科目: 来源: 题型:填空题

5.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右顶点为A,P为双曲线上的一个动点(不是顶点),若从点A引双曲线的两条渐近线的平行线,与直线OP分别交于Q、R两点,其中O为坐标原点,则|OP|2与|OQ|•|OR|的大小关系为|OP|2=|OQ|•|OR|.(填“>”,“<”或“=”)

查看答案和解析>>

科目: 来源: 题型:选择题

4.半径不等的两定圆O1,O2没有公共点,且圆心不重合,动圆O与定圆O1和定圆O2都内切,则圆心O的轨迹是(  )
A.双曲线的一支B.椭圆
C.双曲线的一支或椭圆D.双曲线或椭圆

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=ax2+bx+clnx(a,b,c∈R).
(1)当a=-1,b=2,c=0时,求曲线y=f(x)在点(2,0)处的切线方程;
(2)当a=1,b=0时,求函数f(x)的极值;
(3)当b=-2a,c=1时,是否存在实数a,使得0<x≤2时,函数y=f(x)图象上的点都在$\left\{\begin{array}{l}0<x≤2\\ x-y-1≥0\end{array}\right.$所表示的平面区域内(含边界)?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

2.为了考察某种药物预防禽流感的效果,某研究中心选了50只鸭子做实验,统计结果如下:
得禽流感不得禽流感总计
服药52025
不服药151025
总计203050
(1)能有多大的把握认为药物有效?
(2)在服药后得禽流感的鸭子中,有2只母鸭,3只公鸭,在这5只中随机抽取3只再进行研究,求至少抽到1只母鸭的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
临界值表:
 P(K2≥k0 0.10 0.05 0.01
 k0 2.706 3.841 6.635

查看答案和解析>>

科目: 来源: 题型:选择题

1.如图,一个空间几何体的正视图、侧视图、俯视图均为全等的等腰直角三角形,如果直角三角形的斜边长为$\sqrt{2}$,那么这个几何体的体积是(  )
A.$\frac{{3+\sqrt{3}}}{2}$B.$3+\sqrt{3}$C.$\frac{1}{6}$D.$\frac{3}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

20.在直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}x=4t\\ y=3t-\frac{a}{4}\end{array}\right.$(t为参数),在极坐标系(与直角坐标系xoy取相同的单位长度,且以原点为极点,x轴的正半轴为极轴)中,圆C的极坐标方程为ρ=4cosθ.
(1)若直l线与圆C相切,求实数a的值;
(2)若点M的直角坐标为(1,1),求过点M且与直线l垂直的直线m的极坐标方程.

查看答案和解析>>

同步练习册答案