相关习题
 0  236761  236769  236775  236779  236785  236787  236791  236797  236799  236805  236811  236815  236817  236821  236827  236829  236835  236839  236841  236845  236847  236851  236853  236855  236856  236857  236859  236860  236861  236863  236865  236869  236871  236875  236877  236881  236887  236889  236895  236899  236901  236905  236911  236917  236919  236925  236929  236931  236937  236941  236947  236955  266669 

科目: 来源: 题型:解答题

19.某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12]
①估计该校学生每周平均体育运动时间超过4小时的概率P;
②假设该校每个学生每周平均体育运动时间超过4小时的概率都为P,试求从中任选三人至少有一人每周平均体育运动时间超过4小时的概率
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$.
男生女生总计
每周平均体育运动时间不超过4小时453075
每周平均体育运动时间超过4小时16560225
总计21090300

查看答案和解析>>

科目: 来源: 题型:填空题

18.若函数f(x)=x(x-c)2在x=2处有极大值,且对于任意x∈[5,8],f(x)-m≤0恒成立,则实数m的取值范围为[32,+∞).

查看答案和解析>>

科目: 来源: 题型:填空题

17.在区间[-2,4]上随机地取一个数x,若x满足x≤m的概率为$\frac{2}{3}$,则m=2.

查看答案和解析>>

科目: 来源: 题型:选择题

16.设函数f(x)=ex+3x(x∈R),则f ( x )(  )
A.有最大值B.有最小值C.是增函数D.是减函数

查看答案和解析>>

科目: 来源: 题型:选择题

15.中心在坐标原点,离心率为 $\frac{5}{3}$且实轴长为6的双曲线的焦点在 x 轴上,则它的渐近线方程是(  )
A.y=±$\frac{5}{4}$xB.y=±$\frac{4}{5}$xC.y=±$\frac{4}{3}$xD.y=±$\frac{3}{4}$x

查看答案和解析>>

科目: 来源: 题型:选择题

14.“a(a-1)≤0”是“方程x2+x-a=0有实数根”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:选择题

13.在区间(1,7)上任取一个数,这个数在区间(5,8)上的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知$f(x)=\left\{\begin{array}{l}f({x-5}),x≥0\\{log_3}({-x}),x<0\end{array}\right.$,则f(2017)等于1.

查看答案和解析>>

科目: 来源: 题型:填空题

11.等差数列{an}的前n项和为Sn,若a2=1,a3=2,则S4=6.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,在三棱柱ABC-A1B1C1中,B1B=B1A=AB=BC,∠B1BC=90°,D为AC的中点,AB⊥B1D.
(1)求证:平面ABB1A1⊥平面ABC;
(2)在线段CC1(不含端点)上,是否存在点E,使得二面角E-B1D-B的余弦值为$-\frac{{\sqrt{7}}}{14}$?若存在,求出$\frac{CE}{{C{C_1}}}$的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案