相关习题
 0  236775  236783  236789  236793  236799  236801  236805  236811  236813  236819  236825  236829  236831  236835  236841  236843  236849  236853  236855  236859  236861  236865  236867  236869  236870  236871  236873  236874  236875  236877  236879  236883  236885  236889  236891  236895  236901  236903  236909  236913  236915  236919  236925  236931  236933  236939  236943  236945  236951  236955  236961  236969  266669 

科目: 来源: 题型:选择题

8.如图,给出的是计算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{2016}$的值的程序框图,其中判断框内可填入的是(  )
A.i≤2 021?B.i≤2 019?C.i≤2 017?D.i≤2 015?

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知角α的终边过点(3,4).
(Ⅰ)求sinα,cosα的值;
(Ⅱ)求$\frac{{2cos({\frac{π}{2}-α})-cos({π+α})}}{{2sin({π-α})}}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数f(x)的定义域是D,若存在常数m、M,使得m≤f(x)≤M对任意x∈D成立,则称函数f(x)是D上的有界函数,其中m称为函数f(x)的下界,M称为函数f(x)的上界;特别地,若“=”成立,则m称为函数f(x)的下确界,M称为函数f(x)的上确界.
(Ⅰ)判断$f(x)=\sqrt{x+1}-\sqrt{x},g(x)={9^x}-2•{3^x}$是否是有界函数?说明理由;
(Ⅱ)若函数f(x)=1+a•2x+4x(x∈(-∞,0))是以-3为下界、3为上界的有界函数,求实数a的取值范围;
(Ⅲ)若函数$f(x)=\frac{{1-a•{2^x}}}{{1+a•{2^x}}}({x∈[{0,1}],a>0})$,T(a)是f(x)的上确界,求T(a)的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)两相邻的零点之间的距离为$\frac{π}{2}$,将f(x)的图象向左平移$\frac{π}{6}$个单位后图象对应的函数g(x)是偶函数.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的对称轴及单调递增区间.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知集合A=$\left\{{\left.x\right|{{({\frac{1}{2}})}^{{x^2}-5x+6}}≥\frac{1}{4}}\right\},B=\left\{{\left.x\right|{{log}_2}\frac{x-3}{x-1}<1}\right\},C=\left\{{\left.x\right|a-1<x<a}\right\}$.
(Ⅰ)求A∩B,(∁RB)∪A;
(Ⅱ)若C⊆A,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

3.若函数f(x)=ax2-(2a+1)x+a+1对于任意a∈[-1,1],都有f(x)<0,则实数x的取值范围是(1,2).

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知函数f(x)=x2+2ax+3在(-∞,1]上是减函数,当x∈[a+1,1]时,f(x)的最大值与最小值之差为g(a),则g(a)的最小值是1.

查看答案和解析>>

科目: 来源: 题型:填空题

1.函数$y={log_{0.5}}({{x^2}-4x+3})$的单调递增区间是(-∞,1).

查看答案和解析>>

科目: 来源: 题型:填空题

20.函数$f(x)=\frac{{lg({x+2})}}{{\sqrt{-{x^2}-x+6}}}$的定义域为(-2,2).

查看答案和解析>>

科目: 来源: 题型:选择题

19.在实数集R中定义一种运算“⊙”,具有性质:①对任意a、b∈R,a⊙b=b⊙a;②a⊙0=a;③对任意a、b∈R,(a⊙b)⊙c=(ab)⊙c+(a⊙c)+(b⊙c)-2c,则函数f(x)=x⊙$\frac{1}{x}({x>0})$的最小值是(  )
A.2B.3C.$3\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

同步练习册答案