相关习题
 0  236870  236878  236884  236888  236894  236896  236900  236906  236908  236914  236920  236924  236926  236930  236936  236938  236944  236948  236950  236954  236956  236960  236962  236964  236965  236966  236968  236969  236970  236972  236974  236978  236980  236984  236986  236990  236996  236998  237004  237008  237010  237014  237020  237026  237028  237034  237038  237040  237046  237050  237056  237064  266669 

科目: 来源: 题型:解答题

9.已知函数f(x)=sinx+tanx-2x.
(1)证明:函数f(x)在(-$\frac{π}{2}$,$\frac{π}{2}$)上单调递增;
(2)若x∈(0,$\frac{π}{2}$),f(x)≥mx2,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=2,M、N分别是AB、A1C的中点.
(1)求证:MN∥平面BB1C1C;
(2)若平面CMN⊥平面B1MN,求直线AB与平面B1MN所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.某市春节期间7家超市的广告费支出xi(万元)和销售额yi(万元)数据如下:
超市ABCDEFG
广告费支出xi1246111319
销售额yi19324044525354
(1)若用线性回归模型拟合y与x的关系,求y关于x的线性回归方程;
(2)用对数回归模型拟合y与x的关系,可得回归方程:$\widehaty=12lnx+22$,
经计算得出线性回归模型和对数模型的R2分别约为0.75和0.97,请用R2说明选择哪个回归模型更合适,并用此模型预测A超市广告费支出为8万元时的销售额.
参数数据及公式:$\overline x=8\;\;,\;\;\overline y=42$,$\sum_{i=1}^7{{x_i}{y_i}}=2794\;\;,\;\;\sum_{i=1}^7{{x_i}^2}=708$,$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}\;\;,\;\;\widehata=\overline y-\widehatb\overline x$,ln2≈0.7.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知△ABC的内角A,B,C的对边分别为a,b,c,a2+b2=λab.
(1)若$λ=\sqrt{6}$,$B=\frac{5π}{6}$,求sinA;
(2)若λ=4,AB边上的高为$\frac{{\sqrt{3}c}}{6}$,求C.

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知抛物线C:y2=2px(p>0)的焦点为F,$A({0\;\;,\;\;\sqrt{3}})$,抛物线C上的点B满足AB⊥AF,且|BF|=4,则p=2或6.

查看答案和解析>>

科目: 来源: 题型:填空题

4.设数列{an}的前n项和为Sn,且${S_n}=\frac{{{a_1}({{4^n}-1})}}{3}$,若a4=32,则a1=$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知ω>0,将函数f(x)=cosωx的图象向右平移$\frac{π}{2}$个单位后得到函数$g(x)=sin({ωx-\frac{π}{4}})$的图象,则ω的最小值是(  )
A.$\frac{3}{2}$B.3C.$\frac{4}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

2.二项式(x-a)7的展开式中,含x4项的系数为-280,则${∫}_{a}^{2e}$$\frac{1}{x}$dx=(  )
A.ln2B.ln2+1C.1D.$\frac{{{e^2}-1}}{{4{e^2}}}$

查看答案和解析>>

科目: 来源: 题型:选择题

1.设等差数列{an}的前n项和为Sn,若S4=-4,S6=6,则S5=(  )
A.1B.0C.-2D.4

查看答案和解析>>

科目: 来源: 题型:选择题

20.在△ABC中,∠B=90°,$\overrightarrow{AB}=({1\;\;,\;\;-2})$,$\overrightarrow{AC}=({3\;\;,\;\;λ})$,则λ=(  )
A.-1B.1C.$\frac{3}{2}$D.4

查看答案和解析>>

同步练习册答案