相关习题
 0  236884  236892  236898  236902  236908  236910  236914  236920  236922  236928  236934  236938  236940  236944  236950  236952  236958  236962  236964  236968  236970  236974  236976  236978  236979  236980  236982  236983  236984  236986  236988  236992  236994  236998  237000  237004  237010  237012  237018  237022  237024  237028  237034  237040  237042  237048  237052  237054  237060  237064  237070  237078  266669 

科目: 来源: 题型:解答题

2.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的两个焦点为${F_1},{F_2},|{{F_1}{F_2}}|=2\sqrt{2}$,点A,B在椭圆上,F1在线段AB上,且△ABF2的周长等于$4\sqrt{3}$.
(1)求椭圆C的标准方程;
(2)过圆O:x2+y2=4上任意一点P作椭圆C的两条切线PM和PN与圆O交于点M,N,求△PMN面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表
组别PM2.5浓度
(微克/立方米)
频数(天)频率
  第一组(0,25]30.15
第二组(25,50]120.6
第三组(50,75]30.15
第四组(75,100]20.1
(1)从样本中PM2.5的24小时平均浓度超过50微克/立方米的天数中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(2)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.
①求图中a的值;
②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

20.把正整数排列成如图1所示的三角形数阵,然后擦去偶数行中的奇数和奇数行中的偶数,得到如图2所示的三角形数阵,设aij为图2所示三角形数阵中第i行第j个数,若amn=2017,则实数对(m,n)为(45,41).

查看答案和解析>>

科目: 来源: 题型:填空题

19.平面向量$\overrightarrow a$与$\overrightarrow b$的夹角为90°,$\overrightarrow a=({2,0}),|{\overrightarrow b}|=1$则$|{\overrightarrow a+2\overrightarrow b}|$=2$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

18.两个粒子A,B从同一源发射出来,在某一时刻,它们的位移分别为$\overrightarrow{s_A}=({2,10}),\overrightarrow{s_B}=({4,3})$,粒子B相对粒子A的位移是$\overrightarrow s$,则$\overrightarrow s$在$\overrightarrow{s_B}$的投影是(  )
A.$\frac{13}{5}$B.$-\frac{13}{5}$C.$\frac{{13\sqrt{53}}}{53}$D.$-\frac{{13\sqrt{53}}}{53}$

查看答案和解析>>

科目: 来源: 题型:解答题

17.某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在[50,100]内,发布成绩使用等级制各等级划分标准见下表,规定:A、B、C三级为合格等级,D为不合格等级.
百分制85分及以上70分到84分60分到69分60分以下
等级ABCD
为了解该校高一年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示.

(1)求n和频率分布直方图中x,y的值;
(2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生中任选3人,求至少有1人成绩是合格等级的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

16.函数f(x)=lnx-mx
(Ⅰ)若曲线y=f(x)过点P(1,-1),求曲线y=f(x)在点P处的切线方程;
(Ⅱ)求函数y=f(x)在区间[1,e]上的最大值;
(Ⅲ)若x∈[1,e],求证:lnx<$\frac{x}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知直线y=x-1与椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$交于A、B两点,则线段AB的长为$\frac{24}{7}$.

查看答案和解析>>

科目: 来源: 题型:选择题

14.过双曲线${x^2}-\frac{y^2}{2}=1$的一个焦点作直线交双曲线于A、B两点,若|AB|=4,则这样的直线有(  )
A.4条B.3条C.2条D.1条

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=ln(ax+$\frac{1}{2}$)+$\frac{2}{2x+1}$.
(1)若a=1,且f(x)在(0,+∞)上单调递增,求实数a的取值范围;
(2)是否存在实数a,使得函数f(x)在(0,+∞)上的最小值为1?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案