相关习题
 0  236892  236900  236906  236910  236916  236918  236922  236928  236930  236936  236942  236946  236948  236952  236958  236960  236966  236970  236972  236976  236978  236982  236984  236986  236987  236988  236990  236991  236992  236994  236996  237000  237002  237006  237008  237012  237018  237020  237026  237030  237032  237036  237042  237048  237050  237056  237060  237062  237068  237072  237078  237086  266669 

科目: 来源: 题型:选择题

2.已知命题P:?x∈(-∞,0),2x<3x;命题q:?x∈(0,π),sinx≤1,则下列命题为真命题的是(  )
A.p∧qB.p∨(¬q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知i为虚数单位,则复数$z=\frac{1}{1-i}$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 来源: 题型:选择题

20.若集合A={x|x≥0},且A∩B=B,则集合B可能是(  )
A.{x|x≥2}B.{x|x≤1}C.{x|x≥-1}D.R

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)=ln(x+1),g(x)=$\frac{1}{2}$x2-x.
(Ⅰ)求过点(-1,0)且与曲线y=f(x)相切的直线方程;
(Ⅱ)设h(x)=af(x)+g(x),其中a为非零实数,若y=h(x)有两个极值点x1,x2,且x1<x2,求证:2h(x2)-x1>0.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知F1,F2分别为椭圆C:$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$的左、右焦点,点P(x0,y0)在椭圆C上.
(Ⅰ)求$\overrightarrow{{PF}_{1}}$•$\overrightarrow{{PF}_{2}}$的最小值;
(Ⅱ)若y0>0且$\overrightarrow{{PF}_{1}}$•$\overrightarrow{F{{\;}_{1}F}_{2}}$=0,已知直线l:y=k(x+1)与椭圆C交于两点A,B,过点P且平行于直线l的直线交椭圆C于另一点Q,问:四边形PABQ能否成为平行四边形?若能,请求出直线l的方程;若不能,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

17.如图,阴影部分是由四个全等的直角三角形组成的图形,若直角三角形两条直角边的长分别为a,b,且a=2b,则在大正方形内随即掷一点,这一点落在正方形内的概率为$\frac{1}{5}$.

查看答案和解析>>

科目: 来源: 题型:选择题

16.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的渐近线与抛物线$y=\frac{1}{2}{x^2}+2$相切,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

科目: 来源: 题型:解答题

15.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2+2sinθ}\end{array}\right.$(θ为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系.
(1)写出曲线C的极坐标方程;
(2)设点M的极坐标为($\sqrt{2},\frac{π}{4}$),过点M的直线l与曲线C相交于A,B两点,若|MA|=2|MB|,求AB的弦长.

查看答案和解析>>

科目: 来源: 题型:解答题

14.若?x∈D,总有f(x)<F(x)<g(x),则称F(x)为f(x)与g(x)在D上的一个“严格分界函数”.
(1)求证:y=ex是y=1+x和y=1+x+$\frac{{x}^{2}}{2}$在(-1,0)上的一个“严格分界函数”;
(2)函数h(x)=2ex+$\frac{1}{1+x}$-2,若存在最大整数M使得h(x)>$\frac{M}{10}$在X∈(-1,0)恒成立,求M的值.(e=2.718…是自然对数的底数,$\sqrt{2}$≈1.414,${2}^{\frac{1}{3}}$≈1.260)

查看答案和解析>>

科目: 来源: 题型:解答题

13.2016年11月20日-22日在江西省南昌市举行了首届南昌国际马拉松赛事,赛后某机构用“10分制”调查了很多人(包括普通市民,运动员,政府官员,组织者,志愿者等)对此项赛事的满意度.现从调查人群中随机抽取16名,如图茎叶图记录了他们的满意度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):

(1)指出这组数据的众数和中位数;
(2)若满意度不低于9.5分,则称该被调查者的满意度为“极满意”.求从这16人中随机选取3人,至多有1人是“极满意”的概率;
(3)以这16人的样本数据来估计整个被调查群体的总体数据,若从该被调查群体(人数很多)任选3人,记ξ表示抽到“极满意”的人数,求ξ的分布列及数学期望.

查看答案和解析>>

同步练习册答案