相关习题
 0  236933  236941  236947  236951  236957  236959  236963  236969  236971  236977  236983  236987  236989  236993  236999  237001  237007  237011  237013  237017  237019  237023  237025  237027  237028  237029  237031  237032  237033  237035  237037  237041  237043  237047  237049  237053  237059  237061  237067  237071  237073  237077  237083  237089  237091  237097  237101  237103  237109  237113  237119  237127  266669 

科目: 来源: 题型:解答题

11.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,PA⊥底面ABCD,且PA=AB=AC=2,$BC=2\sqrt{2}$.
(Ⅰ)求证:平面PCD⊥平面PAC;
(Ⅱ)如果M是棱PD上的点,N是棱AB上一点,AN=2NB,且三棱锥N-BMC的体积为$\frac{1}{6}$,求$\frac{PM}{MD}$的值.

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知O,F分别为双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的中心和右焦点,点G、M分别在E的渐近线和右支上,若$\overrightarrow{FG}$•$\overrightarrow{OG}$=0,GM∥x轴,|OM|=|OF|,则E的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y-2=0相切.
(1)求椭圆C的方程;
(2)A,B分别为椭圆C的左、右顶点,动点M满足MB⊥AB,直线AM与椭圆交于点P(与A点不重合),以MP为直径的圆交线段BP于点N,求证:直线MN过定点.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图一,在边长为2的等边三角形ABC中,D、E、F分别是BC、AB、AC的中点,将△ABD沿AD折起,得到如图二所示的三棱锥A-BCD,其中$BC=\sqrt{2}$.
(1)证明:AD⊥BC;
(2)求四棱锥D-EFCB的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知双曲线$Γ:{x^2}-\frac{y^2}{b^2}=1$(b>0),直线l:y=kx+m(km≠0),l与Γ交于P、Q两点,P'为P关于y轴的对称点,直线P'Q与y轴交于点N(0,n);
(1)若点(2,0)是Γ的一个焦点,求Γ的渐近线方程;
(2)若b=1,点P的坐标为(-1,0),且$\overrightarrow{NP'}=\frac{3}{2}\overrightarrow{P'Q}$,求k的值;
(3)若m=2,求n关于b的表达式.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=3;
(1)求四棱锥A1-ABCD的体积;
(2)求异面直线A1C与DD1所成角的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,正方形ABCD的对角线AC与BD相交于点O,四边形OAEF为矩形,平面OAEF⊥平面ABCD,AB=AE.
(Ⅰ)求证:平面DEF⊥平面BDF;
(Ⅱ)若点H在线段BF上,且BF=3HF,求直线CH与平面DEF所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知抛物线y2=4x的焦点为椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点F,点B为此抛物线与椭圆C在第一象限的交点,且$|{BF}|=\frac{5}{3}$.
(I)求椭圆C的方程;
(Ⅱ)过点F作两条互相垂直的直线l1,l2,直线l1与椭圆C交于P,Q两点,直线l2与直线x=4交于点T,求$\frac{{|{TF}|}}{{|{PQ}|}}$的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

3.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$满足$\overrightarrow{a}$=(2,0),|$\overrightarrow{b}$|=1,若|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{7}$,则a与b的夹角是$\frac{π}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知一几何体的三视图如图所示,俯视图由一个直角三角形与一个半圆组成,则该几何体的体积为(  )
A.4π+8B.4π+12C.8π+8D.8π+12

查看答案和解析>>

同步练习册答案