相关习题
 0  236935  236943  236949  236953  236959  236961  236965  236971  236973  236979  236985  236989  236991  236995  237001  237003  237009  237013  237015  237019  237021  237025  237027  237029  237030  237031  237033  237034  237035  237037  237039  237043  237045  237049  237051  237055  237061  237063  237069  237073  237075  237079  237085  237091  237093  237099  237103  237105  237111  237115  237121  237129  266669 

科目: 来源: 题型:选择题

11.给出定义:设f′(x)是函数y=f(x)的导函数,f″(x)是函数f′(x)的导函数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.已知函数f(x)=-4x+3sinx-cosx的拐点是M(x0,f(x0)),则点M(  )
A.在直线y=-3x上B.在直线y=3x上C.在直线y=-4x上D.在直线y=4x上

查看答案和解析>>

科目: 来源: 题型:选择题

10.某几何体的三视图如图所示,若该几何体的所有顶点都在一个球面上,则该球面的表面积为(  )
A.20πB.$\frac{44}{3}$πC.$\frac{28}{3}$πD.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,四边形ABCD为梯形,AB∥CD,PD⊥平面ABCD,∠BAD=∠ADC=90°,$DC=2AB=2,DA=\sqrt{3}$.
(1)线段BC上是否存在一点E,使平面PBC⊥平面PDE?若存在,请给出$\frac{BE}{CE}$的值,并进行证明;若不存在,请说明理由.
(2)若$PD=\sqrt{3}$,线段PC上有一点F,且PC=3PF,求直线AF与平面PBC所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知抛物线E:y2=2px(p>0)的焦点过为F,过F且倾斜角为$\frac{π}{4}$的直线l被E截得的线段长为8.
(Ⅰ)求抛物线E的方程;
(Ⅱ)已知点C是抛物线上的动点,以C为圆心的圆过F,且圆C与直线x=$\frac{1}{2}$相交于A,B两点,求|FA|•|FB|的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图所示,四棱锥P-ABCD的侧面PAD是边长为2的正三角形,底面ABCD是∠ABC=60°的菱形,M为PC的中点,PC=$\sqrt{6}$.
(Ⅰ)求证:PC⊥AD;
(Ⅱ)求三棱锥M-PAB的体积.

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知$\overrightarrow a,\overrightarrow b$为单位向量,若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-2$\overrightarrow{b}$|,则$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,点P为圆E:(x-1)2+y2=r2(r>1)与x轴的左交点,过点P作弦PQ,使PQ与y轴交于PQ的中点D.
(Ⅰ)当r在(1,+∞)内变化时,求点Q的轨迹方程;
(Ⅱ)已知点A(-1,1),设直线AQ,EQ分别与(Ⅰ)中的轨迹交于另一点Q1,Q2,求证:当Q在(Ⅰ)中的轨迹上移动时,只要Q1,Q2都存在,且Q1,Q2不重合,则直线Q1Q2恒过定点,并求该定点坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

4.在直角坐标系xOy中,已知直线l:$\left\{{\begin{array}{l}{x=\sqrt{3}+tcosα}\\{y=tsinα}\end{array}}\right.$(t为参数)与椭圆C:$\left\{\begin{array}{l}x=2cosθ\\ y=sinθ\end{array}\right.$(θ为参数)相交于不同的两点A,B.
(Ⅰ)若$α=\frac{π}{3}$,求线段AB中点M的坐标;
(Ⅱ)若$|{AB}|=\sqrt{3}|{OP}|$,其中为椭圆的右焦点P,求直线l的斜率.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图所示,抛物线C:y2=2px(p>0)的焦点为F,过点F且斜率存在的直线l交抛物线C于A,B两点,已知当直线l的斜率为1时,|AB|=8.
(Ⅰ)求抛物线C的方程;
(Ⅱ)过点A作抛物线C的切线交直线x=$\frac{p}{2}$于点D,试问:是否存在定点M在以AD为直径的圆上?若存在,求点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图所示,在边长为2的正方形ABCD中,点E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′,O为A′D的中点,连接EF,EO,FO.

(Ⅰ)求证:A′D⊥EF;
(Ⅱ)求直线BD与平面OEF所成角的正弦值.

查看答案和解析>>

同步练习册答案