相关习题
 0  236992  237000  237006  237010  237016  237018  237022  237028  237030  237036  237042  237046  237048  237052  237058  237060  237066  237070  237072  237076  237078  237082  237084  237086  237087  237088  237090  237091  237092  237094  237096  237100  237102  237106  237108  237112  237118  237120  237126  237130  237132  237136  237142  237148  237150  237156  237160  237162  237168  237172  237178  237186  266669 

科目: 来源: 题型:填空题

8.某算法的程序框图如图所示,则改程序输出的结果为$\frac{9}{10}$.

查看答案和解析>>

科目: 来源: 题型:填空题

7.利用分层抽样的方法在学生总数为800的年级中抽取20名同学,其中女生人数为8人,则该年级男生人数为480.

查看答案和解析>>

科目: 来源: 题型:选择题

6.对于数列{an},定义H0=$\frac{{{a_1}+2{a_2}+…+{2^{n-1}}{a_n}}}{n}$为{an}的“优值”.现已知某数列的“优值”H0=2n+1,记数列{an-20}的前n项和为Sn,则Sn的最小值为(  )
A.-64B.-68C.-70D.-72

查看答案和解析>>

科目: 来源: 题型:选择题

5.设偶函数f(x)满足f(x)=2x-4(x≥0),则满足f(a-2)>0的实数a的取值范围为(  )
A.(2,+∞)B.(4,+∞)C.(0,4)D.(-∞,0)∪(4,+∞)

查看答案和解析>>

科目: 来源: 题型:解答题

4.△ABC中,角A,B,C的对边分别为a,b,c,且角A,B,C满足A<B<C,a2+c2-b2=ac.
(1)求角B的大小;
(2)若$tanA=\frac{{\sqrt{2}}}{2},c=\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:填空题

3.抛物线y2=3x上的一点M到y轴距离为1,则点M到该抛物线焦点的距离为$\frac{7}{4}$.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知数列{an}满足an+1=$\frac{1}{{1-{a_n}}}$,若a1=$\frac{1}{2}$,则a2017=(  )
A.$\frac{1}{2}$B.2C.-1D.1

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=|x|+|x-2|.
(1)求关于x的不等式f(x)<3的解集;
(2)如果关于x的不等式f(x)<a的解集不是空集,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知曲线C的极坐标方程是ρ=6cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数).
(1)将曲线C的极坐标方程化为直角坐标方程(普通方程);
(2)若直线l与曲线C相交于A、B两点,且|AB|=2$\sqrt{7}$,求直线的倾斜角α的值.

查看答案和解析>>

科目: 来源: 题型:解答题

19.二手车经销商小王对其所经营的A型号二手汽车的使用年数x与销售价格y(单位:万元/辆)进行整理,得到如下数据:
使用年数x234567
售价y201286.44.43
z=lny3.002.482.081.861.481.10
下面是z关于x的折线图:

(1)由折线图可以看出,可以用线性回归模型拟合z与x的关系,请用相关数加以说明;
(2)求y关于x的回归方程并预测某辆A型号二手车当使用年数为9年时售价约为多少?($\widehat{b}$、$\widehat{a}$小数点后保留两位有效数字).
(3)基于成本的考虑,该型号二手车的售价不得低于7118元,请根据(2)求出的回归方程预测在收购该型号二手车时车辆的使用年数不得超过多少年?
参考公式:回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中斜率和截距的最小二乘估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$.
参考数据:
$\sum_{i=1}^{6}{x}_{i}{y}_{i}$=187.4,$\sum_{i=1}^{6}{x}_{i}{z}_{i}$=47.64,$\sum_{i=1}^{6}{{x}_{i}}^{2}$=139,$\sqrt{\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}}$=4.18,$\sqrt{\sum_{i=1}^{6}({y}_{i}-\overline{y})^{2}}$=13.96,
$\sqrt{\sum_{i=1}^{6}({z}_{i}-\overline{z})^{2}}$=1.53,ln1.46≈0.38,ln0.7118≈-0.34.

查看答案和解析>>

同步练习册答案