相关习题
 0  237021  237029  237035  237039  237045  237047  237051  237057  237059  237065  237071  237075  237077  237081  237087  237089  237095  237099  237101  237105  237107  237111  237113  237115  237116  237117  237119  237120  237121  237123  237125  237129  237131  237135  237137  237141  237147  237149  237155  237159  237161  237165  237171  237177  237179  237185  237189  237191  237197  237201  237207  237215  266669 

科目: 来源: 题型:填空题

20.以椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的中心O为圆心,以$\sqrt{\frac{ab}{2}}$为半径的圆称为该椭圆的“伴随”.
(1)若椭圆C的离心率为$\frac{\sqrt{3}}{2}$,其“伴随”与直线$\sqrt{3}$x+y-2=0相切,求椭圆C的方程.
(2)设椭圆E:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{4{b}^{2}}$=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于AB两点,射线PO交椭圆E于点Q.
(i)求$\frac{|OQ|}{|OP|}$的值;
(ii)求△ABQ面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

19.设a>0,函数f(x)=x2-2ax-2alnx
(1)当a=1时,求函数f(x)的单调区间;
(2)若函数y=f(x)在区间(0,+∞)上有唯一零点,试求a的值.

查看答案和解析>>

科目: 来源: 题型:选择题

18.F是抛物线y2=4x的焦点,P、Q是抛物线上两点,|PF|=2,|QF|=5,则|PQ|=(  )
A.3$\sqrt{5}$B.4$\sqrt{3}$C.3$\sqrt{5}$或$\sqrt{13}$D.3$\sqrt{5}$或4$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

17.在圆O:x2+y2=4上任取一点P,过点P作y轴额垂线段PQ,Q为垂足.当P在圆上运动时,线段PQ中点G的轨迹为C.
(Ⅰ)求C的方程;
(Ⅱ)直线l与圆O交于M,N两点,与曲线C交于E,F两点,若|MN|=$\frac{8\sqrt{5}}{5}$,试判断∠EOF是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

16.某公司要招聘甲、乙两类员工共150人,该公司员工的工资由基础工资组成.其中甲、乙两类员工每人每月的基础工资分别为2千元和3千元,甲类员工每月的人均绩效工资与公司月利润成正比,比例系数为a(a>0),乙类员工每月的绩效工资与公司月利润的平方成正比,比例系数为b(b>0).
(Ⅰ)若要求甲类员工的人数不超过乙类员工人数的2倍,问甲、乙两类员工各招聘多少人时,公司每月所付基础工资总额最少?
(Ⅱ)若该公司每月的利润为x(x>0)千元,记甲、乙两类员工该月人均工资分别为w千元和w千元,试比较w和w的大小.(月工资=月基础工资+月绩效工资)

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知方程$\frac{{x}^{2}}{2+m}$+$\frac{{y}^{2}}{1-m}$=1表示焦点在x轴上的椭圆,则实数m的取值范围为-$\frac{1}{2}$<m<1.

查看答案和解析>>

科目: 来源: 题型:选择题

14.从一块短轴成为2m的椭圆形板材中截取一块面积最大的矩形,若椭圆的离心率为e,且e∈[$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{21}}{5}$],则该矩形面积的取值范围是(  )
A.[m2,2m2]B.[2m2,3m2]C.[3m2,4m2]D.[4m2,5m2]

查看答案和解析>>

科目: 来源: 题型:填空题

13.给出下列结论:
动点M(x,y)分别到两定点(-4,0),(4,0)连线的斜率之乘积为-$\frac{9}{16}$,设M(x,y)的轨迹为曲线C,F1、F2分别为曲线C的左右焦点,则下列命题中:
(1)曲线C的焦点坐标为F1(-5,0),F2(5,0);
(2)曲线C上存在一点M,使得S△F1MF2=9;
(3)P为曲线C上一点,P,F1,F2是直角三角形的三个顶点,且|PF1|>|PF2|,$\frac{|P{F}_{1}|}{|P{F}_{2}|}$的值为$\frac{23}{9}$;
(4)设A(1,1),动点P在曲线C上,则|PA|+|PF1|的最大值为8+$\sqrt{9-2\sqrt{7}}$;
其中正确命题的序号是③④.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知F1、F2是椭圆和双曲线的公共焦点,P是他们的一个公共点,且∠F1PF2=$\frac{π}{3}$,则椭圆和双曲线的离心率之积的最小值为(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目: 来源: 题型:填空题

11.给出下列结论:动点M(x,y)分别到两定点(-4,0),(4,0)连线的斜率之积为-$\frac{9}{16}$,设M(x,y)的轨迹为曲线C,F1、F2分别曲线C的左、右焦点,则下列命题中:
(1)曲线C的焦点坐标为F1(-5,0)、F2(5,0);
(2)曲线C上存在一点M,使得S${\;}_{△{F}_{1}P{F}_{2}}$=9;
(3)P为曲线C上一点,P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,$\frac{|P{F}_{1}|}{|P{F}_{2}|}$的值为$\frac{23}{9}$;
(4)设A(1,1),动点P在曲线C上,则|PA|-|PF2|的最大值为$\sqrt{9-2\sqrt{7}}$;
其中正确命题的序号是(3)(4).

查看答案和解析>>

同步练习册答案