相关习题
 0  237055  237063  237069  237073  237079  237081  237085  237091  237093  237099  237105  237109  237111  237115  237121  237123  237129  237133  237135  237139  237141  237145  237147  237149  237150  237151  237153  237154  237155  237157  237159  237163  237165  237169  237171  237175  237181  237183  237189  237193  237195  237199  237205  237211  237213  237219  237223  237225  237231  237235  237241  237249  266669 

科目: 来源: 题型:选择题

20.若函数f(x)=a(x-2)ex+lnx+$\frac{1}{x}$存在唯一的极值点,且此极值大于0,则(  )
A.0≤a<$\frac{1}{e}$B.0≤a<$\frac{1}{{e}^{2}}$C.-$\frac{1}{e}$<a<$\frac{1}{{e}^{2}}$D.0≤a<$\frac{1}{e}$或a=-$\frac{1}{e}$

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-4y+3≥0}\\{x+y≥0}\\{x≥1}\end{array}\right.$,目标函数z=2x+y,则(  )
A.z的最小值为3,z无最大值B.z的最小值为1,最大值为3
C.z的最小值为3,z无最小值D.z的最小值为1,z无最大值

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数f($\frac{x}{2}$)=-$\frac{1}{8}$x3+$\frac{m}{4}$x2-m,g(x)=-$\frac{1}{2}$x3+mx2+(a+1)x+2xcosx-m.
(1)若曲线y=f(x)仅在两个不同的点A(x1,f(x1)),B(x1,f(x2))处的切线都经过点(2,t),求证:t=3m-8,或t=-$\frac{1}{27}$m3+$\frac{2}{3}$m2-m.
(2)当x∈[0,1]时,若f(x)≥g(x)恒成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,侧面PAB⊥底面ABCD,△PAB为正三角形.AB⊥AD,CD⊥AD,点E、M为线段BC、AD的中点,F,G分别为线段PA,AE上一点,且AB=AD=2,PF=2FA.
(1)确定点G的位置,使得FG∥平面PCD;
(2)试问:直线CD上是否存在一点Q,使得平面PAB与平面PMQ所成锐二面角的大小为30°,若存在,求DQ的长;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知数列{an}的前n项和为Sn,数列{$\frac{{S}_{n}}{n}$}的公差为1的等差数列,且a2=3,a3=5.
(1)求数列{an}的通项公式;
(2)设bn=an•3n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:填空题

15.在底面是菱形的四棱锥P-ABCD中,PA⊥底面ABCD,∠BAD=120°,点E为棱PB的中点,点F在棱AD上,平面CEF与PA交于点K,且PA=AB=3,AF=2,则点K到平面PBD的距离为$\frac{9\sqrt{5}}{25}$.

查看答案和解析>>

科目: 来源: 题型:选择题

14.设a>0,若关于x,y的不等式组$\left\{\begin{array}{l}{ax-y+2≥0}\\{x+y-2≥0}\\{x-2≤0}\end{array}\right.$,表示的可行域与圆(x-2)2+y2=9存在公共点,则z=x+2y的最大值的取值范围为(  )
A.[8,10]B.(6,+∞)C.(6,8]D.[8,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

13.若直线y=2x+$\frac{p}{2}$与抛物线x2=2py(p>0)相交于A,B两点,则|AB|等于(  )
A.5pB.10pC.11pD.12p

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,在边长是2的正方体ABCD-A1B1C1D1中,E,F分别为AB,A1C的中点.
(Ⅰ)证明:EF∥平面ADD1A1
(Ⅱ)求二面角A1-EC-D大小的余弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知公差不为0的等差数列{an},若a2+a4=10,且a1、a2、a5成等比数列,则a1=1,an=2n-1.

查看答案和解析>>

同步练习册答案