相关习题
 0  237097  237105  237111  237115  237121  237123  237127  237133  237135  237141  237147  237151  237153  237157  237163  237165  237171  237175  237177  237181  237183  237187  237189  237191  237192  237193  237195  237196  237197  237199  237201  237205  237207  237211  237213  237217  237223  237225  237231  237235  237237  237241  237247  237253  237255  237261  237265  237267  237273  237277  237283  237291  266669 

科目: 来源: 题型:填空题

18.设样本数据x1,x2,…,x2017的方差是4,若yi=2xi-1(i=1,2,…,2017),则y1,y2,…y2017的方差为16.

查看答案和解析>>

科目: 来源: 题型:选择题

17.在平面直角坐标系中,不等式组$\left\{\begin{array}{l}{x+y≤0}\\{x-y≤0}\\{{x}^{2}+{y}^{2}≤{r}^{2}}\end{array}\right.$(r为常数)表示的平面区域的面积为π,若x,y满足上述约束条件,则z=$\frac{x+y+1}{x+3}$的最小值为(  )
A.-1B.-$\frac{5\sqrt{2}+1}{7}$C.$\frac{1}{3}$D.-$\frac{7}{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

16.若sin(π-α)=$\frac{1}{3}$,且$\frac{π}{2}$≤α≤π,则sin2α的值为(  )
A.-$\frac{4\sqrt{2}}{9}$B.-$\frac{2\sqrt{2}}{9}$C.$\frac{2\sqrt{2}}{9}$D.$\frac{4\sqrt{2}}{9}$

查看答案和解析>>

科目: 来源: 题型:选择题

15.在△ABC中,角A,B,C的对边分别为a、b、c,则“sinA>sinB”是“a>b”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:选择题

14.在复平面中,复数$\frac{1}{(1+i)^{2}+1}$+i4对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 来源: 题型:解答题

13.随着网络的发展,人们可以在网路上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐,为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户按年龄分组进行访谈,统计结果如下表:
 组号 年龄访谈人数  愿意使用
 1[20,30)5 5
 2[30,40) 10 10
 3[40,50) 15 12
 4[50,60) 14 8
 5[60,70) 6 2
(1)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,则各组应分别抽取多少人?
(2)若从第5组的被调查访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.
(3)按以上统计数据填写下面2×2列联表,并判断以50岁为分界点,能否在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关;
  年龄不低于50岁的人数年龄低于50岁的人数 合计 
 愿意使用的人数   
 不愿意使用的人数   
 合计   
参考公式K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
 P(K2≥k) 0.15 0.100.05  0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目: 来源: 题型:解答题

12.若等差数列{an}的前n项和Sn满足S10=100,数列a1,a2-a1,a3-a2,…,an-an-1的前5项和为9.
(1)求数列{an}的通项公式;
(2)若数列{bn}的前n项和为Tn,bn=$\frac{{a}_{n}+3}{({n}^{2}+2n)^{2}}$,求证:Tn<$\frac{5}{8}$.

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知△ABC中,BC=2,AC=2AB,则△ABC面积的最大值为$\frac{4}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

10.定义:若存在实数x1∈[-2,-1],x2∈[a,32]使2${\;}^{-{x}_{1}}$=log2x2成立,则称a为指对实数,那么在a∈[-20,20]上成为指对实数的概率是$\frac{9}{10}$.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,若在双曲线上存在点P使△OPF2是以O为顶点的等腰三角形,又|PF1|+|PF2|=2$\sqrt{2{c}^{2}-{b}^{2}}$,其中c为双曲线的半焦距,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{2}$+1C.$\sqrt{3}$D.$\sqrt{3}$-1

查看答案和解析>>

同步练习册答案