相关习题
 0  237161  237169  237175  237179  237185  237187  237191  237197  237199  237205  237211  237215  237217  237221  237227  237229  237235  237239  237241  237245  237247  237251  237253  237255  237256  237257  237259  237260  237261  237263  237265  237269  237271  237275  237277  237281  237287  237289  237295  237299  237301  237305  237311  237317  237319  237325  237329  237331  237337  237341  237347  237355  266669 

科目: 来源: 题型:选择题

5.椭圆$\frac{x^2}{3}+\frac{y^2}{2}=1$上一点P到左焦点的距离为$\frac{{\sqrt{3}}}{2}$,则P到右准线的距离为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{5\sqrt{5}}{10}$C.$\frac{9}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

4.某几何体三视图如图所示,则该几何体的表面积为(  )
A.(9+$\sqrt{5}$)πB.(9+2$\sqrt{5}$)πC.(10+$\sqrt{5}$)πD.(10+2$\sqrt{5}$)π

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点($\sqrt{2}$,1),且离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M、N是椭圆C上的点,直线OM与ON(O为坐标原点)的斜率之积为-$\frac{1}{2}$,若动点P满足$\overrightarrow{OP}$=$\overrightarrow{OM}$+2$\overrightarrow{ON}$,试探究,是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值?若存在,求F1,F2的坐标,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=ax+lnx,其中a为常数,设e为自然对数的底数.
(1)当a=-1时,求f(x)的最大值;
(2)若f(x)在区间(0,e]上的最大值为-3,求a的值;
(3)设g(x)=xf(x),若a>0,对于任意的两个正实数x1,x2(x1≠x2),证明:2g($\frac{{x}_{1}+{x}_{2}}{2}$)<g(x1)+g(x2).

查看答案和解析>>

科目: 来源: 题型:解答题

1.在△ABC中,a,b,c分别是三内角A,B,C对应的三边,已知b2+c2=a2+bc.
(1)求角A的大小;
(2)若2sin2$\frac{B}{2}$=cosC,判断△ABC的形状.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知命题p:方程$\frac{{x}^{2}}{m+1}$+$\frac{{y}^{2}}{3-m}$=1表示焦点在y轴上的椭圆,命题q:关于x的方程x2+2mx+m+3=0无实根.
(1)若命题p为真命题,求实数m的取值范围;
(2)若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

19.若x,y满足约束条件$\left\{\begin{array}{l}{x+y>1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$,且目标函数z=ax+2y仅在点(1,0)处取得最小值,则a的取值范围是(  )
A.(-1,2)B.(-4,2)C.(-4,0)D.(-4,2)

查看答案和解析>>

科目: 来源: 题型:选择题

18.函数f(x)=3x-4x3,(x∈[0,1])的最大值是(  )
A.$\frac{1}{2}$B.-1C.0D.1

查看答案和解析>>

科目: 来源: 题型:选择题

17.命题“?x0∈R,x03-x02+1>0”的否定是(  )
A.?x0∈R,x${\;}_{0}^{3}$-x${\;}_{0}^{2}$+1<0B.?x∈R,x3-x2+1≤0
C.?x0∈R,x${\;}_{0}^{3}$-x${\;}_{0}^{2}$+1≤0D.?x∈R,x3-x2+1>0

查看答案和解析>>

科目: 来源: 题型:填空题

16.设变量x,y满足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y-2≥0}\\{3x+y-9≤0}\end{array}\right.$,若z=a2x+y(a>0)的最大值为4,则a=$\frac{\sqrt{7}}{7}$.

查看答案和解析>>

同步练习册答案