相关习题
 0  237184  237192  237198  237202  237208  237210  237214  237220  237222  237228  237234  237238  237240  237244  237250  237252  237258  237262  237264  237268  237270  237274  237276  237278  237279  237280  237282  237283  237284  237286  237288  237292  237294  237298  237300  237304  237310  237312  237318  237322  237324  237328  237334  237340  237342  237348  237352  237354  237360  237364  237370  237378  266669 

科目: 来源: 题型:选择题

1.已知复数$z=\frac{5}{2i-1}$(i为虚数单位),则z的共轭复数为(  )
A.-1-2iB.-1+2iC.2-iD.2+i

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知命题p:$?x∈({0,\frac{π}{2}}),sinx-x<0$,命题q:$?{x_0}∈({0,+∞}),{2^{x_0}}=\frac{1}{2}$,则下列命题为真命题的是(  )
A.p∧qB.(¬p)∧(-q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知 $a={({\frac{1}{3}})^3},b={x^3},c=lnx$,当x>2时,a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知复数$z=\frac{5}{2i-1}$(i为虚数单位),则z的共轭复数对应的点位于复平面的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图所示,已知长方体ABCD中,AB=4,AD=2,M为DC的中点.将△ADM沿AM折起,使得AD⊥BM.
(1)求证:平面ADM⊥平面ABCM;
(2)若点E为线段DB的中点,求点E到平面DMC的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图所示,已知长方体ABCD中,$AB=2AD=2\sqrt{2},M$为DC的中点.将△ADM沿AM折起,使得AD⊥BM.
(1)求证:平面ADM⊥平面ABCM;
(2)是否存在满足$\overrightarrow{BE}=t\overrightarrow{BD}({0<t<1})$的点E,使得二面角E-AM-D为大小为$\frac{π}{4}$.若存在,求出相应的实数t;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知A,B,C是球O的球面上三点,且$AB=AC=3,BC=3\sqrt{3},D$为该球面上的动点,球心O到平面ABC的距离为球半径的一半,则三棱锥D-ABC体积的最大值为$\frac{27}{4}$.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,在四棱锥S-ABCD中,四边形为ABCD矩形,E为SA的中点,SA=SB,AB=2$\sqrt{3}$,BC=3.
(1)证明:SC∥平面BDE;
(2)若BC⊥SB,求三棱锥C-BDE的体积.

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知双曲线E$:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,其一渐近线被圆C:(x-1)2+(y-3)2=9所截得的弦长等于4,则E的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{5}$C.$\frac{{\sqrt{5}}}{2}$或$\sqrt{3}$D.$\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AB∥CD,∠ADC=90°,$AD=AB=\frac{1}{2}CD=1$,PA⊥平面ABCD,E为PD中点,且PC⊥AE.
(1)求证:PA=AD;
(2)求点A到平面PBC的距离.

查看答案和解析>>

同步练习册答案