相关习题
 0  237265  237273  237279  237283  237289  237291  237295  237301  237303  237309  237315  237319  237321  237325  237331  237333  237339  237343  237345  237349  237351  237355  237357  237359  237360  237361  237363  237364  237365  237367  237369  237373  237375  237379  237381  237385  237391  237393  237399  237403  237405  237409  237415  237421  237423  237429  237433  237435  237441  237445  237451  237459  266669 

科目: 来源: 题型:解答题

6.已知点P(0,-2),点A,B分别为椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右顶点,直线BP交E于点Q,△ABP是等腰直角三角形,且$\overrightarrow{PQ}$=$\frac{3}{2}\overrightarrow{QB}$.
(1)求E的方程;
(2)设过点的动直线l与E相交于M,N两点,当坐标原点O位于MN以为直径的圆外时,求直线l斜率的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

5.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,若该几何体的顶点都在球O的球面上,则球O的表面积为(  )
A.25πB.50πC.75πD.100π

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知焦距为2$\sqrt{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点为A,直线y=$\frac{4}{3}$与椭圆C交于P、Q两点(P在Q的左边),Q在x轴上的射影为B,且四边形ABPQ是平行四边形.
(1)求椭圆C的方程;
(2)斜率为k的直线l与椭圆C交于两个不同的点M,N.
(i)若直线l过原点且与坐标轴不重合,E是直线3x+3y-2=0上一点,且△EMN是以E为直角顶点的等腰直角三角形,求k的值
(ii)若M是椭圆的左顶点,D是直线MN上一点,且DA⊥AM,点G是x轴上异于点M的点,且以DN为直径的圆恒过直线AN和DG的交点,求证:点G是定点.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=|x+1|.
(1)求不等式|2x+1|-f(x)<1的解集;
(2)若关于x的不等式f(x)≥|a-x|+2的解集为非空集合,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

2.在直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线 $C:\frac{x^2}{4}+{y^2}=1$,直线l的极坐标方程为$2ρcos(θ-\frac{π}{3})=1$.
(1)写出曲线C的参数方程及直线l的普通方程;
(2)设曲线C的左顶点为A,直线l与x轴的交点为B,动点P在曲线C上运动,求|PA|2+|PB|2的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

1.某四棱锥的三视图如图所示,则它的外接球的表面积为(  )
A.B.24πC.D.36π

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知曲线E:$\frac{x^2}{a^2}+{y^2}$=1(a>b,a≠1)上两点A(x1,y1),B(x2,y2)(x1≠x2).
(1)若点A,B均在直线y=2x+1上,且线段AB中点的横坐标为-$\frac{1}{3}$,求a的值;
(2)记$\overrightarrow m=(\frac{x_1}{a},{y_1}),\overrightarrow n=(\frac{x_2}{a},{y_2})$,若$\overrightarrow m⊥\overrightarrow n$为坐标原点,试探求△OAB的面积是否为定值?若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.$\frac{8}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知直线l:$ρsin(θ+\frac{π}{3})=\frac{{\sqrt{3}}}{2}m$,曲线C:$\left\{\begin{array}{l}x=1+\sqrt{3}cosθ\\ y=\sqrt{3}sinθ\end{array}\right.$
(1)当m=3时,判断直线l与曲线C的位置关系;
(2)若曲线C上存在到直线l的距离等于$\frac{{\sqrt{3}}}{2}$的点,求实数m的范围.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点与抛物线${y^2}=8\sqrt{2}x$的焦点相同,F1,F2为椭圆的左、右焦点.M为椭圆上任意一点,△MF1F2面积的最大值为4$\sqrt{2}$.
(1)求椭圆C的方程;
(2)设椭圆C上的任意一点N(x0,y0),从原点O向圆N:(x-x02+(y-y02=3作两条切线,分别交椭圆于A,B两点.试探究|OA|2+|OB|2是否为定值,若是,求出其值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案