相关习题
 0  237268  237276  237282  237286  237292  237294  237298  237304  237306  237312  237318  237322  237324  237328  237334  237336  237342  237346  237348  237352  237354  237358  237360  237362  237363  237364  237366  237367  237368  237370  237372  237376  237378  237382  237384  237388  237394  237396  237402  237406  237408  237412  237418  237424  237426  237432  237436  237438  237444  237448  237454  237462  266669 

科目: 来源: 题型:选择题

16.已知定义在R上的可导函数f(x)的导函数为f'(x),满足f'(x)<f(x),且f(0)=2,则不等式f(x)-2ex<0的解集为(  )
A.(-2,+∞)B.(0,+∞)C.(1,+∞)D.(4,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知四面体A-BCD中,△ABC和△BCD都是边长为6的正三角形,则当四面体的体积最大时,其外接球的表面积是(  )
A.60πB.30πC.20πD.15π

查看答案和解析>>

科目: 来源: 题型:填空题

14.已知(如图)为某四棱锥的三视图,则该几何体体积为$\frac{8}{3}$

查看答案和解析>>

科目: 来源: 题型:填空题

13.已知圆O的有n条弦,且任意两条弦都彼此相交,任意三条弦不共点,这n条弦将圆O分成了an个区域,(例如:如图所示,圆O的一条弦将圆O分成了2(即a1=2)个区域,圆O的两条弦将圆O分成了4(即a2=4)个区域,圆O的3条弦将圆O分成了7(即a3=7)个区域),以此类推,那么an+1与an(n≥2)之间的递推式关系为:an+1=an+n+1

查看答案和解析>>

科目: 来源: 题型:选择题

12.如图所示,面积为S的平面凸四边形的第i条边的边长为ai(i=1,2,3,4),此四边形内在一点P到第i条边的距离记为hi(i=1,2,3,4),若$\frac{a_1}{1}=\frac{a_2}{3}=\frac{a_3}{5}=\frac{a_4}{7}$=k,则h1+3h2+5h3+7h4=$\frac{2S}{k}$.类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若$\frac{S_1}{1}=\frac{S_2}{3}=\frac{S_3}{5}=\frac{S_4}{7}$=K,H1+3H2+5H3+7H4=(  )
A.$\frac{V}{2K}$B.$\frac{2V}{K}$C.$\frac{3V}{K}$D.$\frac{V}{3K}$

查看答案和解析>>

科目: 来源: 题型:解答题

11.对于定义域为D的函数y=f(x),若同时满足下列条件:①f(x)在D内单调递增或单调递减;②存在[a,b]⊆D区间,使f(x)在[a,b]上的值域为[a,b],那么把y=f(x),x∈D叫闭函数.
(1)求闭函数y=-x3符合条件②的区间[a,b];
(2)若函数$y=k+\sqrt{x+2}$是闭函数,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.若从袋子中随机抽取1个小球,取到标号为2的小球的概率是$\frac{1}{2}$.
(1)求n的值;
(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.
(i)记“a+b=2”为事件A,求事件A的概率;
(ii)在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知约束条件$\left\{\begin{array}{l}{x-3y+4≥0}\\{x+2y-1≥0}\\{3x+y-8≤0}\end{array}\right.$,若目标函数z=x+ay(a≥0)在且只在点(2,2)处取得最大值,则a的取值范围为(  )
A.0<a<$\frac{1}{3}$B.a≥$\frac{1}{3}$C.a>$\frac{1}{3}$D.0<a<$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,右顶点为A,下顶点为B,点P($\frac{3}{4}$,0)满足|PA|=|PB|.
(Ⅰ)求椭圆C的方程.
(Ⅱ)不垂直于坐标轴的直线l与椭圆C交于M,N两点,以MN为直径的圆过原点,且线段MN的垂直平分线过点P,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知正三棱柱ABC-A1B1C1的顶点都在同一个球面上,且该正三棱柱的体积为$\frac{\sqrt{3}}{2}$,三角形ABC周长为3,则这个球的体积为$\frac{16π}{3}$.

查看答案和解析>>

同步练习册答案