相关习题
 0  237269  237277  237283  237287  237293  237295  237299  237305  237307  237313  237319  237323  237325  237329  237335  237337  237343  237347  237349  237353  237355  237359  237361  237363  237364  237365  237367  237368  237369  237371  237373  237377  237379  237383  237385  237389  237395  237397  237403  237407  237409  237413  237419  237425  237427  237433  237437  237439  237445  237449  237455  237463  266669 

科目: 来源: 题型:选择题

6.已知某几何体的三视图如图,则该几何体的体积是(  )
A.$\frac{{4\sqrt{3}}}{3}$B.$4\sqrt{3}$C.$2\sqrt{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目: 来源: 题型:填空题

5.一个四棱锥的三视图如图所示,则该四棱锥外接球的体积为$4\sqrt{3}π$.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知ai>0(i=1,2,3,…,n),观察下列不等式:$\frac{{{a_1}+{a_2}}}{2}≥\sqrt{{a_1}{a_2}}$;$\frac{{{a_1}+{a_2}+{a_3}}}{3}≥\root{3}{{{a_1}{a_2}{a_3}}}$;$\frac{{{a_1}+{a_2}+{a_3}+{a_4}}}{4}≥\root{4}{{{a_1}{a_2}{a_3}{a_4}}}$;

照此规律,当n∈N*(n≥2)时,$\frac{{{a_1}+{a_2}+…+{a_n}}}{n}≥$$\root{n}{{{a_1}{a_2}…{a_n}}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知曲线C1的参数方程为$_1\left\{\begin{array}{l}x=1+cosθ\\ y=1+sinθ\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=1.
(Ⅰ)把C1的参数方程式化为普通方程,C2的极坐标方程式化为直角坐标方程;
(Ⅱ)求C1与C2焦点的极坐标(ρ,θ)(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=lnx-ax(a∈R)有两个不同的零点.
(Ⅰ)求a的取值范围;
(Ⅱ)记两个零点分别为x1,x2,且x1<x2,已知λ>0,若不等式1+λ<lnx1+λlnx2恒成立,求λ的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

1.如图,已知正三角形ABC的三个顶点都在球O的球面上,球心O到平面ABC的距离为1,且AB=3,则球O的表面积为16π.

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知某几何体的三视图如图,则该几何体的表面积是(  )
A.$4+4\sqrt{3}$B.$4+6\sqrt{3}$C.$8+6\sqrt{3}$D.$8+8\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

19.在平面直角坐标系中,直线l的方程为x+y+3=0,以直角坐标系中x轴的正半轴为极轴的极坐标系中,圆M的极坐标方程为ρ=2sinθ.
(Ⅰ)写出圆M的直角坐标方程及过点P(2,0)且平行于l的直线l1的参数方程;
(Ⅱ)设l1与圆M的两个交点为A,B,求$\frac{1}{PA}$+$\frac{1}{PB}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知a>0,b>0,函数f(x)=|x+a|+|x-b|的最小值为4.
(Ⅰ)求a+b的值;
(Ⅱ)求$\frac{1}{4}{a^2}+\frac{1}{9}{b^2}$的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

17.各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=1,a2=3,则数列{an}的通项公式为${a_n}=\frac{{{n^2}+n}}{2}$.

查看答案和解析>>

同步练习册答案