相关习题
 0  237287  237295  237301  237305  237311  237313  237317  237323  237325  237331  237337  237341  237343  237347  237353  237355  237361  237365  237367  237371  237373  237377  237379  237381  237382  237383  237385  237386  237387  237389  237391  237395  237397  237401  237403  237407  237413  237415  237421  237425  237427  237431  237437  237443  237445  237451  237455  237457  237463  237467  237473  237481  266669 

科目: 来源: 题型:选择题

6.已知定义在R上的函数f(x)=sinωx(ω>0)的图象与x轴的两个相邻交点的距离等于$\frac{π}{2}$,若将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位得到函数y=g(x)的图象,则使y=g(x)是减函数的区间为(  )
A.$({\frac{π}{4},\frac{π}{3}})$B.$({-\frac{π}{4},\frac{π}{4}})$C.$({0,\frac{π}{3}})$D.$({-\frac{π}{3},0})$

查看答案和解析>>

科目: 来源: 题型:解答题

5.四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,$\overrightarrow{CD}$=$\overrightarrow{c}$,$\overrightarrow{DA}$=$\overrightarrow{d}$,且$\overrightarrow{a}$•$\overrightarrow{b}$=0,$\overrightarrow{b}$•$\overrightarrow{c}$=0,|$\overrightarrow{a}$|≠|$\overrightarrow{c}$|,试判定四边形ABCD是什么图形.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知数列{an}满足an>0,a1=2,且(n+1)an+12=nan2+an(n∈N*).
(Ⅰ)证明:an>1;
(Ⅱ)证明:$\frac{{a}_{2}^{2}}{4}$+$\frac{{a}_{3}^{2}}{9}$+…+$\frac{{a}_{n}^{2}}{{n}^{2}}$<$\frac{9}{5}$(n≥2).

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知点A(-2,0),B(0,1)在椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)P是线段AB上的点,直线y=$\frac{1}{2}$x+m(m≥0)交椭圆C于M、N两点,若△MNP是斜边长为$\sqrt{10}$的直角三角形,求直线MN的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=$\frac{1}{3}$x3-ax2+3x+b(a,b∈R).
(Ⅰ)当a=2,b=0时,求f(x)在[0,3]上的值域.
(Ⅱ)对任意的b,函数g(x)=|f(x)|-$\frac{2}{3}$的零点不超过4个,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=2sin2x+cos(2x-$\frac{π}{3}$).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在(0,$\frac{π}{2}$)上的单调递增区间.

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知正实数x,y满足xy+2x+3y=42,则xy+5x+4y的最小值为55.

查看答案和解析>>

科目: 来源: 题型:填空题

19.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=$\frac{π}{4}$,b=$\sqrt{6}$,△ABC的面积为$\frac{3+\sqrt{3}}{2}$,则c=1+$\sqrt{3}$,B=$\frac{π}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知等差数列{an},等比数列{bn}的前n项和为Sn,Tn(n∈N*),若Sn=$\frac{3}{2}$n2+$\frac{1}{2}$n,b1=a1,b2=a3,则an=3n-1,Tn=$\frac{2}{3}({4}^{n}-1)$.

查看答案和解析>>

科目: 来源: 题型:填空题

17.已知某几何体的三视图如图所示,则该几何体的表面积为2+2$\sqrt{5}$,体积为$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案