相关习题
 0  237294  237302  237308  237312  237318  237320  237324  237330  237332  237338  237344  237348  237350  237354  237360  237362  237368  237372  237374  237378  237380  237384  237386  237388  237389  237390  237392  237393  237394  237396  237398  237402  237404  237408  237410  237414  237420  237422  237428  237432  237434  237438  237444  237450  237452  237458  237462  237464  237470  237474  237480  237488  266669 

科目: 来源: 题型:解答题

18.在直角坐标系xOy中,直线C1:$y=-\sqrt{3}x$,曲线C2的参数方程是$\left\{\begin{array}{l}x=-\sqrt{3}+cosφ\\ y=-2+sinφ\end{array}\right.$(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)求C1的极坐标方程和C2的普通方程;
(Ⅱ)把C1绕坐标原点沿顺时针方向旋转$\frac{π}{3}$得到直线C3,C3与C2交于A,B两点,求|AB|.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知命题p:?x∈R,不等式x2-mx+$\frac{3}{2}$>0恒成立,命题q:椭圆$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{3-m}$=1的焦点在x轴上.若命题p∨q为真命题,求实数m的取值范围(-$\sqrt{6}$,3).

查看答案和解析>>

科目: 来源: 题型:选择题

16.在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L距离”定义为:||P1P2||=|x1-x2|+|y1-y2|,则平面内与x轴上两个不同的定点F1,F2的“L距离”之和等于定值(大于||F1F2||)的点的轨迹可以是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:选择题

15.在长为3m的线段AB上任取一点P,则点P与线段AB两端点的距离都大于1m的概率等于(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

14.设椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,E上一点P到右焦点距离的最小值为1.
(1)求椭圆E的方程;
(2)过点(0,2)的直线交椭圆E于不同的两点A,B,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点为F1,F2,它的两个顶点是线段F1F2的三等分点,过焦点F1且垂直于x轴的直线交双曲线于A,B两点,|AB|=16,求双曲线C的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

12.设t是1的立方根,则A={x|x=tn+$\frac{1}{{t}^{n}}$,n∈Z},则A={-1,2}.

查看答案和解析>>

科目: 来源: 题型:解答题

11.在△ABC中,a,b,c分别是角A,B,C的对边,且$\frac{cosC}{cosB}$=$\frac{3a-c}{b}$,求sinB的值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知数列{an}各项均为正数,a2=2a1=2,且$\frac{{a}_{n+3}}{{a}_{n+2}}$=$\frac{{a}_{n+1}}{{a}_{n}}$对?n∈N*恒成立,记数列{an}的前n项和为Sn
(1)证明:数列{a2n-1+a2n}为等比数列;
(2)若存在正实数t,使得数列{Sn+t}为等比数列,求数列{an}的通项公式.

查看答案和解析>>

科目: 来源: 题型:选择题

9.设△ABC的面积为S1,它的外接圆面积为S2,若△ABC的三个内角大小满足A:B:C=3:4:5,则$\frac{{S}_{1}}{{S}_{2}}$的值为(  )
A.$\frac{25}{12π}$B.$\frac{25}{24π}$C.$\frac{3+\sqrt{3}}{2π}$D.$\frac{3+\sqrt{3}}{4π}$

查看答案和解析>>

同步练习册答案