相关习题
 0  237339  237347  237353  237357  237363  237365  237369  237375  237377  237383  237389  237393  237395  237399  237405  237407  237413  237417  237419  237423  237425  237429  237431  237433  237434  237435  237437  237438  237439  237441  237443  237447  237449  237453  237455  237459  237465  237467  237473  237477  237479  237483  237489  237495  237497  237503  237507  237509  237515  237519  237525  237533  266669 

科目: 来源: 题型:解答题

5.设点P(x,y)(x≥0)为平面直角坐标系xOy中的一个动点(其中O为坐标原点),点P到定点M(0,$\frac{1}{2}$)的距离比点P到x轴的距离大$\frac{1}{2}$.
(1)求点P的轨迹方程;
(2)若直线l:y=kx与点P的轨迹相交于A,B两点,且|AB|=2$\sqrt{6}$,求k的值.
(3)设点P的轨迹是曲线C,点Q(1,y0)是曲线C上的一点,求以Q为切点的曲线C的切线方程.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知椭圆C的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,({a>b>0})$,点F1,F2分别为其左右焦点,离心率为e,直线l:y=ex+a与x轴、y轴分别交于A,B两点,点M是直线l与椭圆C的一个公共点,设$\overrightarrow{AM}=λ\overrightarrow{AB}$.
(1)证明:λ=1-e2
(2)若λ=$\frac{3}{4}$,△MF1F2的周长为6,求椭圆C的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知正项数列{an},其前n项和为Sn,且an=2$\sqrt{{S}_{n}}$-1.
(1)求数列{an}的通项公式;
(2)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知f(x)=|x+a|,g(x)=|x+3|-x.
(1)当a=1,解不等式f(x)<g(x);
(2)对任意x∈[-1,1],f(x)<g(x)恒成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

1.设Sn为数列{an}的前n项和,且Sn=2an-n+1(n∈N*),bn=an+1.
(1)求数列{bn}的通项公式;
(2)求数列{nbn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知α是锐角,且cos(α+$\frac{π}{6}$)=$\frac{1}{3}$,则cos(α-$\frac{π}{3}$)=$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

19.若f(x)=sin3x+acos2x在(0,π)上存在最小值,则实数a的取值范围是(  )
A.(0,$\frac{3}{2}$)B.(0,$\frac{3}{2}$]C.[$\frac{3}{2}$,+∞)D.(0,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

18.若双曲线的焦点到渐近线的距离是焦距的$\frac{\sqrt{5}}{5}$,则该双曲线的离心率为(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

17.设a=0.23,b=log0.30.2,c=log30.2,则a,b,c大小关系正确的是(  )
A.a>b>cB.b>a>cC.b>c>aD.c>b>a

查看答案和解析>>

科目: 来源: 题型:选择题

16.袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”.现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案