相关习题
 0  237346  237354  237360  237364  237370  237372  237376  237382  237384  237390  237396  237400  237402  237406  237412  237414  237420  237424  237426  237430  237432  237436  237438  237440  237441  237442  237444  237445  237446  237448  237450  237454  237456  237460  237462  237466  237472  237474  237480  237484  237486  237490  237496  237502  237504  237510  237514  237516  237522  237526  237532  237540  266669 

科目: 来源: 题型:选择题

15.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为17,14,则输出的a=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目: 来源: 题型:选择题

14.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为(  )
A.2B.4C.4+4$\sqrt{2}$D.6+4$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

13.在平面直角坐标系xOy中,抛物线E:x2=4y的焦点F是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的一个顶点.过点F且斜率为k(k≠0)的直线l交椭圆C于另一点D,交抛物线E于A、B两点,线段DF的中点为M,直线OM交椭圆C于P、Q两点,记直线OM的斜率为k',满足$k•k'=-\frac{1}{4}$.
(1)求椭圆C的方程;
(2)记△PDF的面积为S1,△QAB的面积为S2,设${S_1}•{S_2}=λ{k^2}$,求实数λ的最大值及取得最大值时直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数f(x)=x•ex-1-a(x+lnx),a∈R.
(1)若曲线y=f(x)在点(1,f(1))处的切线为x轴,求a的值:
(2)在(1)的条件下,求f(x)的单调区间;
(3)若?x>0,f(x)≥f(m)恒成立,且f(m)≥0,求证:f(m)≥2(m2-m3).

查看答案和解析>>

科目: 来源: 题型:解答题

11.在四边形ABCD中(如图①),AB∥CD,AB⊥BC,G为AD上一点,且AB=AG=1,GD=CD=2,M为GC的中点,点P为边BC上的点,且满足BP=2PC.现沿GC折叠使平面GCD⊥平面ABCG(如图②).
(1)求证:平面BGD⊥平面GCD:
(2)求直线PM与平面BGD所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.将函数$y=sin({x-\frac{π}{3}})$的图象上每点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),得到函数y=f(x)的图象.
(1)求函数f(x)的解析式及其图象的对称轴方程;
(2)在△ABC中,内角A,B,C的对边分别为a,b,c.若$f(A)=\frac{{\sqrt{3}}}{2},a=2,b=\frac{{2\sqrt{3}}}{3}$,求sinB的值.

查看答案和解析>>

科目: 来源: 题型:选择题

9.不等式组$\left\{\begin{array}{l}-1≤x≤1\\ 0≤y≤2\end{array}\right.$表示的点集M,不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{y≥2{x}^{2}}\end{array}\right.$表示的点集记为N,在M中任取一点P,则P∈N的概率为(  )
A.$\frac{5}{32}$B.$\frac{9}{32}$C.$\frac{9}{16}$D.$\frac{5}{16}$

查看答案和解析>>

科目: 来源: 题型:选择题

8.为了解本市居民的生活成本,甲、乙、内三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),甲、乙、丙所调查数据的标准差分别为x1,x2,x3,则它们的大小关系为(  )
A.s1>s2>s3B.s1>s3>s2C.s3>s2>s1D.s3>s1>s2

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=xlnx,g(x)=-x2+ax-2.
(1)若曲线f(x)=xlnx在x=1处的切线与函数g(x)=-x2+ax-2也相切,求实数a的值;
(2)求函数f(x)在$[{t,t+\frac{1}{4}}]({t>0})$上的最小值;
(3)证明:对任意的x∈(0,+∞),都有$xlnx>\frac{x}{e^x}-\frac{2}{e}$成立.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦点F与抛物线y2=4x的焦点重合,椭圆C上的点到F的最大距离为3.
(1)求椭圆C的方程;
(2)过椭圆C右焦点F的直线l(与x轴不重合)与椭圆C交于A、B两点,求△OAB(O为坐标原点)面积S的最大值.

查看答案和解析>>

同步练习册答案