相关习题
 0  237348  237356  237362  237366  237372  237374  237378  237384  237386  237392  237398  237402  237404  237408  237414  237416  237422  237426  237428  237432  237434  237438  237440  237442  237443  237444  237446  237447  237448  237450  237452  237456  237458  237462  237464  237468  237474  237476  237482  237486  237488  237492  237498  237504  237506  237512  237516  237518  237524  237528  237534  237542  266669 

科目: 来源: 题型:解答题

15.在直角坐标系xOy中,直线l的参数方程为$\left\{{\begin{array}{l}{x=3-t}\\{y=1+t}\end{array}$(t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ=2$\sqrt{2}$cos(θ-$\frac{π}{4}$).
(Ⅰ) 求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ) 求曲线C上的点到直线l的距离的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知函数f(x)=lnx+$\frac{a}{x}({a>0})$.
(Ⅰ) 若函数f(x)有零点,求实数a的取值范围;
(Ⅱ) 证明:当a≥$\frac{2}{e}$,b>1时,f(lnb)>$\frac{1}{b}$.

查看答案和解析>>

科目: 来源: 题型:解答题

13.过点P(a,-2)作抛物线C:x2=4y的两条切线,切点分别为A(x1,y1),B(x2,y2).
(Ⅰ) 证明:x1x2+y1y2为定值;
(Ⅱ) 记△PAB的外接圆的圆心为点M,点F是抛物线C的焦点,对任意实数a,试判断以PM为直径的圆是否恒过点F?并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.
(Ⅰ) 求证:AB⊥平面ADC;
(Ⅱ) 若AD=1,二面角C-AB-D的平面角的正切值为$\sqrt{6}$,求二面角B-AD-E的余弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

11.阅读如图的程序框图.若输入n=5,则输出k的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目: 来源: 题型:解答题

10.为了响应厦门市政府“低碳生活,绿色出行”的号召,思明区委文明办率先全市发起“少开一天车,呵护厦门蓝”绿色出行活动.“从今天开始,从我做起,力争每周至少一天不开车,上下班或公务活动带头选择步行、骑车或乘坐公交车,鼓励拼车…”铿锵有力的话语,传递了绿色出行、低碳生活的理念.
某机构随机调查了本市部分成年市民某月骑车次数,统计如下:
[0,10)[10,20)[20,30)[30,40)[40,50)[50,60]
18岁至31岁8122060140150
32岁至44岁12282014060150
45岁至59岁255080100225450
60岁及以上2510101852
联合国世界卫生组织于2013年确定新的年龄分段:44岁及以下为青年人,45岁至59岁为中年人,60岁及以上为老年人.用样本估计总体的思想,解决如下问题:
(Ⅰ)估计本市一个18岁以上青年人每月骑车的平均次数;
(Ⅱ)若月骑车次数不少于30次者称为“骑行爱好者”,根据这些数据,能否在犯错误的概率不超过0.001的前提下认为“骑行爱好者”与“青年人”有关?
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+c)(a+b)(b+d)(c+d)}$.

查看答案和解析>>

科目: 来源: 题型:选择题

9.如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则f(1)+f(3)=(  )
A.3B.0C.1D.2

查看答案和解析>>

科目: 来源: 题型:填空题

8.将扑克牌4种花色的A,K,Q共12张洗匀.
(1)甲从中任意抽取2张,求抽出的2张都为A的概率;
(2)若甲已抽到了2张K后未放回,求乙抽到2张A的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知命题甲是“{x|$\frac{{x}^{2}+x}{x-1}$≥0}”,命题乙是“{x|log3(2x+1)≤0}”,则甲是乙的必要不充分条件.(从充分不必要、必要不充分、充要、既不充分也不必要中选填)

查看答案和解析>>

科目: 来源: 题型:解答题

6.某厂家计划在2016年举行商品促销活动,经调查测算,该商品的年销售量m万件与年促销费用x万元满足:m=3-$\frac{2}{x+1}$,已知2016年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家的产量等于销售量,而销售收入为生产成本的1.5倍(生产成本由固定投入和再投入两部分资金组成).
(1)将2016年该产品的利润y万元表示为年促销费用x万元的函数;
(2)该厂2016年的促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

同步练习册答案