相关习题
 0  237370  237378  237384  237388  237394  237396  237400  237406  237408  237414  237420  237424  237426  237430  237436  237438  237444  237448  237450  237454  237456  237460  237462  237464  237465  237466  237468  237469  237470  237472  237474  237478  237480  237484  237486  237490  237496  237498  237504  237508  237510  237514  237520  237526  237528  237534  237538  237540  237546  237550  237556  237564  266669 

科目: 来源: 题型:选择题

8.如图,在直三棱柱ABC-A1B1C1中,∠CAB=90°,AC=AB=AA1,则异面直线AC1,A1B所成角的余弦值为(  )
A.$-\frac{1}{4}$B.$\frac{1}{4}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

7.数列{an}的通项公式为${a_n}={n^2}+kn$,那么k≥-2是{an}为递增数列的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知变量x,y满足约束条件$\left\{\begin{array}{l}2x+y≥3\\ y≤x\\ 2x-y≤8\end{array}\right.$,则目标函数z=3x-y的最大值为(  )
A.2B.11C.16D.18

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知点A(-5,0),B(5,0),直线AM,BM的交点为M,AM,BM的斜率之积为$-\frac{16}{25}$,则点M的轨迹方程是(  )
A.$\frac{x^2}{25}-\frac{y^2}{16}=1$B.$\frac{x^2}{25}+\frac{y^2}{16}=1$
C.$\frac{x^2}{25}-\frac{y^2}{16}=1({x≠±5})$D.$\frac{x^2}{25}+\frac{y^2}{16}=1({x≠±5})$

查看答案和解析>>

科目: 来源: 题型:选择题

4.某三棱锥的三视图如图所示,则该三棱锥的体积为(  )
A.$\frac{2}{3}$B.1C.$\frac{1}{3}$D.2

查看答案和解析>>

科目: 来源: 题型:选择题

3.为了求函数f(x)=2x+3x-7的一个零点(精确度0.05),某同学已经利用计算器得f(1.5)=0.32843,f(1.25)=-0.8716,则还需用二分法等分区间的次数为(  )
A.2次B.3次C.4次D.5次

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2017)=1.

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知α,β是不同的平面,m,n是不同的直线,给出下列命题:
①若m?α,n?α,m∥β,n∥β,则α∥β;
②若m?α,n?α,m,n是异面直线,则n与α相交;
③若α∩β=m,n∥m,且n?α,n?β,则n∥α,n∥β.
其中真命题的个数是(  )
A.1B.2C.3D.0

查看答案和解析>>

科目: 来源: 题型:解答题

20.函数f(θ)=$\overrightarrow{a}$•$\overrightarrow{b}$,向量$\overrightarrow{a}$=(sinθ,cosθ),$\overrightarrow{b}$=$(sinθ,\sqrt{3}sinθ+2cosθ)$,其中角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(1)若点P的坐标为$(\frac{1}{2}\;,\;\frac{{\sqrt{3}}}{2})$,求f(θ)的值;
(2)若点P(x,y)满足y=1,|x|≤1,试确定θ的取值范围,并求函数f(θ)的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

19.如图,在平行四边形ABCD中,F是BC边的中点,AF交BD于E,若$\overrightarrow{BE}=λ\overrightarrow{ED}$,则λ=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案