相关习题
 0  237374  237382  237388  237392  237398  237400  237404  237410  237412  237418  237424  237428  237430  237434  237440  237442  237448  237452  237454  237458  237460  237464  237466  237468  237469  237470  237472  237473  237474  237476  237478  237482  237484  237488  237490  237494  237500  237502  237508  237512  237514  237518  237524  237530  237532  237538  237542  237544  237550  237554  237560  237568  266669 

科目: 来源: 题型:填空题

8.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目: 来源: 题型:填空题

7.一个口袋里装有大小相同的6个小球,其中红色、黄色、绿色的球各2个,现从中任意取出3个小球,其中恰有2个小球同颜色的概率是$\frac{3}{5}$.若取到红球得1分,取到黄球得2分,取到绿球得3分,记变量ξ为取出的三个小球得分之和,则ξ的期望为6.

查看答案和解析>>

科目: 来源: 题型:选择题

6.为了得到函数$y=sin(2x+\frac{π}{3})$的图象,可以将函数$y=sin(2x+\frac{π}{6})$的图象(  )
A.向左平移$\frac{π}{6}$个单位长度B.向右平移$\frac{π}{6}$个单位长度
C.向左平移$\frac{π}{12}$个单位长度D.向右平移$\frac{π}{12}$个单位长度

查看答案和解析>>

科目: 来源: 题型:解答题

5.在△ABC中,角A,B,C所对的边分别是a,b,c,且sin2A-sin(2B+C)=sinC.
(1)证明:a=b;
(2)若A为函数f(x)=sin($\frac{π}{4}$-x)sin($\frac{π}{4}$+x)+$\frac{1}{4}$的一个零点,且c=2,求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:填空题

4.设离散型随机变量X的分布列为
X01234
P0.20.10.10.30.3
若离散型随机变量Y满足Y=2X+1,则E(Y)=5.8;D(Y)=23.2.

查看答案和解析>>

科目: 来源: 题型:填空题

3.抛物线x=ay2(a≠0)的焦点坐标是($\frac{1}{4a}$,0);双曲线$\frac{x^2}{12}-\frac{y^2}{4}=1$的顶点到渐近线的距离为$\frac{\sqrt{30}}{5}$.

查看答案和解析>>

科目: 来源: 题型:填空题

2.若xlog34=1,则x=log43; 4x+4-x=$\frac{10}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$.
(1)求函数f(x)的单调减区间;
(2)已知△ABC中角A,B,C所对的边分别是a,b,c,其中b=2,若锐角A满足f($\frac{A}{2}$-$\frac{π}{6}$)=3,且$\frac{π}{4}$≤B≤$\frac{π}{3}$,求边c的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知$f(x)=\frac{ax}{x+b}$,$f(1)=\frac{5}{4}$,f(2)=2,f[g(x)]=4-x.
(1)求f(x)的解析式;
(2)求g(x)的解析式;
(3)求g(5)的值.

查看答案和解析>>

科目: 来源: 题型:填空题

19.4名学生被中大、华工、华师录取,若每所大学至少要录取1名,则共有不同的录取方法36种.

查看答案和解析>>

同步练习册答案