相关习题
 0  237399  237407  237413  237417  237423  237425  237429  237435  237437  237443  237449  237453  237455  237459  237465  237467  237473  237477  237479  237483  237485  237489  237491  237493  237494  237495  237497  237498  237499  237501  237503  237507  237509  237513  237515  237519  237525  237527  237533  237537  237539  237543  237549  237555  237557  237563  237567  237569  237575  237579  237585  237593  266669 

科目: 来源: 题型:填空题

2.若不等式x2<|x-1|+a在区间(-3,3)上恒成立,则实数a的取值范围为[7,+∞).

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P(1,$\frac{3}{2}$),且一个焦点为F1(-1,0).
(1)求椭圆E的方程;
(2)若PA、PB、PC为椭圆E的三条弦,PA、PB所在的直线分别与x轴交于点M,N,且|PM|=|PN|,PC∥AB,求直线PC的方程.

查看答案和解析>>

科目: 来源: 题型:选择题

20.在△ABC中,内角A,B,C所对的边分别为a,b,c,且BC边上的高为$\frac{a}{2}$,则$\frac{c}{b}+\frac{b}{c}$最大值为(  )
A.2B.$\sqrt{2}$C.2$\sqrt{2}$D.4

查看答案和解析>>

科目: 来源: 题型:解答题

19.求值:
(I)${(2\frac{1}{4})^{\frac{1}{2}}}-{(-9.6)^0}-{(3\frac{3}{8})^{-\frac{2}{3}}}+{(1.5)^{-2}}$;
(II) $lg14-2lg\frac{7}{3}+lg7-lg18$.

查看答案和解析>>

科目: 来源: 题型:填空题

18.圆x2+y2-4x+2y=0上一点P(1,1)的圆的切线方程为:x-2y+1=0.

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知实数x,y满足x2+4y2≤4,则|x+2y-4|+|3-x-y|的最大值为(  )
A.6B.12C.13D.14

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=xlnx+2,g(x)=x2-mx.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)若存在x0∈[$\frac{1}{e}$,e]使得mf′(x0)+g(x0)≥2x0+m成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,圆O(O为坐标原点)与离心率为$\frac{{\sqrt{3}}}{2}$的椭圆T:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)相交于点M(0,1). 
(I)求椭圆T与圆O的方程;
(Ⅱ)过点M引两条互相垂直的两直线l1、l2与两曲线分别交于点A、C与点B、D(均不重合).
①P为椭圆上任一点(异于点M),记点P到两直线的距离分别为d1、d2,求d12+d22的最大值;
②若3$\overrightarrow{MA}•\overrightarrow{MC}=4\overrightarrow{MB}•\overrightarrow{MD}$,求l1与l2的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已成椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{3}$.其右顶点与上顶点的距离为$\sqrt{5}$,过点P(0,2)的直线l与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)设M是AB中点,且Q点的坐标为($\frac{2}{5}$,0),当QM⊥AB时,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=|x+b2|-|-x+1|,g(x)=|x+a2+c2|+|x-2b2|,其中a,b,c均为正实数,且ab+bc+ac=1.
(Ⅰ)当b=1时,求不等式f(x)≥1的解集;
(Ⅱ)当x∈R时,求证f(x)≤g(x).

查看答案和解析>>

同步练习册答案