相关习题
 0  237402  237410  237416  237420  237426  237428  237432  237438  237440  237446  237452  237456  237458  237462  237468  237470  237476  237480  237482  237486  237488  237492  237494  237496  237497  237498  237500  237501  237502  237504  237506  237510  237512  237516  237518  237522  237528  237530  237536  237540  237542  237546  237552  237558  237560  237566  237570  237572  237578  237582  237588  237596  266669 

科目: 来源: 题型:解答题

12.已知动点M到定点F(1,0)和定直线x=4的距离之比为$\frac{1}{2}$,设动点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点F作斜率不为0的任意一条直线与曲线C交于两点A,B,试问在x轴上是否存在一点P(与点F不重合),使得∠APF=∠BPF,若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知$f(x)=\frac{kx+b}{e^x}$.
(1)若f(x)在x=0处的切线方程为y=x+1,求k与b的值;
(2)求$\int_0^1{\frac{x-1}{e^x}}{d_x}$.

查看答案和解析>>

科目: 来源: 题型:填空题

10.若(1+2x)n(n∈N*)二项式展开式中的各项系数之和为an,其二项式系数之和为bn,则$\lim_{n→∞}\frac{{{b_{n+1}}-{a_n}}}{{{a_{n+1}}+{b_n}}}$=$-\frac{1}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知抛物线Γ:y2=2px上一点M(3,m)到焦点的距离为4,动直线y=kx(k≠0)交抛物线Γ于坐标原点O和点A,交抛物线Γ的准线于点B,若动点P满足$\overrightarrow{OP}=\overrightarrow{BA}$,动点P的轨迹C的方程为F(x,y)=0;
(1)求出抛物线Γ的标准方程;
(2)求动点P的轨迹方程F(x,y)=0;(不用指明范围)
(3)以下给出曲线C的四个方面的性质,请你选择其中的三个方面进行研究:①对称性;②图形范围;③渐近线;④y>0时,写出由F(x,y)=0确定的函数y=f(x)的单调区间,不需证明.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=x2-4x+a+3,a∈R;
(1)若函数y=f(x)在[-1,1]上存在零点,求a的取值范围;
(2)设函数g(x)=bx+5-2b,b∈R,当a=3时,若对任意的x1∈[1,4],总存在x2∈[1,4],使得g(x1)=f(x2),求b的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

7.若过点A(1,0),且与y轴的夹角为$\frac{π}{6}$的直线与抛物线y2=4x交于P、Q两点,则|PQ|=$\frac{16}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知某棱锥的三视图如图所示,俯视图为正方形及一条对角线,根据图中所给的数据,该棱锥外接球的体积是$\frac{{8\sqrt{2}}}{3}π$.

查看答案和解析>>

科目: 来源: 题型:选择题

5.一个扇形的弧长与面积的数值都是5,则这个扇形中心角的度数(  )
A.5B.$\frac{5}{2}$C.3D.$\frac{3}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

4.设数列{an}的前n项和Sn,数列{Sn}的前n项和为Tn,满足Tn=3Sn-2n,n∈N*
(1)求数列{an}的通项公式;
(2)求证:Sn≥1,n∈N*

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知偶函数f(x)的定义域为R,且在(-∞,0)上是增函数,则f(-$\frac{3}{4}$)与f(a2-a+1)的大小关系为(  )
A.f(-$\frac{3}{4}$)<f(a2-a+1)B.f(-$\frac{3}{4}$)>f(a2-a+1)C.f(-$\frac{3}{4}$)≤f(a2-a+1)D.f(-$\frac{3}{4}$)≥f(a2-a+1)

查看答案和解析>>

同步练习册答案