相关习题
 0  237406  237414  237420  237424  237430  237432  237436  237442  237444  237450  237456  237460  237462  237466  237472  237474  237480  237484  237486  237490  237492  237496  237498  237500  237501  237502  237504  237505  237506  237508  237510  237514  237516  237520  237522  237526  237532  237534  237540  237544  237546  237550  237556  237562  237564  237570  237574  237576  237582  237586  237592  237600  266669 

科目: 来源: 题型:选择题

12.甲乙和其他4名同学合影留念,站成两排三列,且甲乙两人不在同一排也不在同一列,则这6名同学的站队方法有(  )
A.144种B.180种C.288种D.360种

查看答案和解析>>

科目: 来源: 题型:选择题

11.设复数z满足(1+i)z=|1-i|(i为虚数单位),则$\overline z$=(  )
A.1+iB.1-iC.$\frac{{\sqrt{2}}}{2}-\frac{{\sqrt{2}}}{2}i$D.$\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{2}}}{2}i$

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)与圆E:x2+(y-$\frac{3}{2}$)2=4相交于A,B两点,且|AB|=2$\sqrt{3}$,圆E交y轴负半轴于点D.
(Ⅰ)求椭圆Γ的离心率;
(Ⅱ)过点D的直线交椭圆Γ于M,N两点,点N与点N'关于y轴对称,求证:直线MN'过定点,并求该定点坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知双曲线方程为16x2-9y2=144.
(1)求该双曲线的实轴长、虚轴长、离心率;
(2)若抛物线C的顶点是该双曲线的中心,而焦点是其左顶点,求抛物线C的方程.

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知F1(0,-1),F2(0,1)是椭圆的两个焦点,过F1的直线l交椭圆于M,N两点,若△MF2N的周长为8,则椭圆方程为(  )
A.$\frac{{y}^{2}}{16}$+$\frac{{x}^{2}}{15}$=1B.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{15}$=1C.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1D.$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知数列{an)中,a1=2,an=1-$\frac{1}{{a}_{n-1}}$(n≥2),则a2017等于(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-1D.2

查看答案和解析>>

科目: 来源: 题型:选择题

6.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=$\sqrt{3}$,A=$\frac{π}{6}$,则角B等于(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{6}$或$\frac{5π}{6}$

查看答案和解析>>

科目: 来源: 题型:解答题

5.在平面直角坐标系xOy中,以坐标原点为极轴,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为:ρ=$\frac{4cosθ}{si{n}^{2}θ}$,直线l的参数方程是$\left\{\begin{array}{l}{x=2+tcosα}\\{y=2+tsinα}\end{array}\right.$(t为参数,0≤α<π).
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C交于两点A,B,且线段AB的中点为M(2,2),求α.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=xlnx+$\frac{a}{x}$(a∈R).
(1)当a=0时,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)求证:当a≥1,f(x)≥1.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知点M到定点F(1,0)和定直线x=4的距离之比为$\frac{1}{2}$,设动点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)设P(4,0),过点F作斜率不为0的直线l与曲线C交于两点A,B,设直线PA,PB的斜率分别是k1,k2,求k1+k2的值.

查看答案和解析>>

同步练习册答案