相关习题
 0  237455  237463  237469  237473  237479  237481  237485  237491  237493  237499  237505  237509  237511  237515  237521  237523  237529  237533  237535  237539  237541  237545  237547  237549  237550  237551  237553  237554  237555  237557  237559  237563  237565  237569  237571  237575  237581  237583  237589  237593  237595  237599  237605  237611  237613  237619  237623  237625  237631  237635  237641  237649  266669 

科目: 来源: 题型:填空题

9.已知抛物线y2=2px(p>0)上一点M(1,m)到其焦点的距离为5,则m=±4.

查看答案和解析>>

科目: 来源: 题型:选择题

8.设a,b∈R,c∈[0,2π),若对任意实数x都有2sin(3x-$\frac{π}{3}$)=asin(bx+c),则满足条件的a,b,c的组数为(  )
A.1组B.2组C.3组D.4组

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数$f(x)=ln({ax+\frac{1}{2}})+\frac{2}{2x+1}({x>0})$.
(Ⅰ)若a>0,且f(x)单调递增,求实数a的取值范围;
(Ⅱ)是否存在实数a,使f(x)的最小值为1,若存在,求出实数a的值,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知三点O(0,0),R(-2,1),Q(2,1),曲线C上任意一点M(x,y)满足$|{\overrightarrow{MR}+\overrightarrow{MQ}}|=\overrightarrow{OM}•({\overrightarrow{OR}+\overrightarrow{OQ}})+2$.
(Ⅰ)求曲线C的方程;
(Ⅱ)若A,B是曲线C上分别位于点Q两边的任意两点,过A,B分别作曲线C的切线交于点P,过点Q作曲线C的切线分别交直线PA,PB于D,E两点,证明:△QAB与△PDE的面积之比为定值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知首项为$\frac{3}{2}$的等比数列{an}的前n项和为Sn,n∈N*,且-2S2,S3,4S4成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对于数列$\left\{{A_n^{\;}}\right\}$,若存在一个区间M,均有Ai∈M,(i=1,2,3…),则称M为数列$\left\{{A_n^{\;}}\right\}$的“容值区间”,设${b_n}={S_n}+\frac{1}{S_n}$,试求数列{bn}的“容值区间”长度的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{6}}}{3}$,短轴一个端点到右焦点的距离为$\sqrt{3}$,
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线$y=kx+\sqrt{2}$与椭圆C交于A,B两点,且$\overrightarrow{OA}•\overrightarrow{OB}=1$,求k的值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,直三棱柱ABC-A1B1C1的底面为正三角形,E、F分别是BC、CC1的中点.
(1)证明:平面AEF⊥平面B1BCC1
(2)若D为AB中点,∠CA1D=30°且AB=4,求三棱锥F-AEC的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知y=f(x)为二次函数,且f(0)=-5,f(-1)=-4,f(2)=-5,求此二次函数的解析式.

查看答案和解析>>

科目: 来源: 题型:填空题

1.边长为1的等边三角形ABC中,沿BC边高线AD折起,使得折后二面角B-AD-C为60°,点D到平面ABC的距离为$\frac{\sqrt{15}}{10}$.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知数列{an}满足a1=1,an+1=$\frac{{a}_{n}}{3{a}_{n}+1}$(n∈N*),数列{bn}的前n项和Tn满足Tn=3n-1(n∈N*).
(1)求数列{an},{bn}的通项公式;
(2)求数列{$\frac{{b}_{n}}{2{a}_{n}}$}的前n项和Sn

查看答案和解析>>

同步练习册答案