相关习题
 0  237457  237465  237471  237475  237481  237483  237487  237493  237495  237501  237507  237511  237513  237517  237523  237525  237531  237535  237537  237541  237543  237547  237549  237551  237552  237553  237555  237556  237557  237559  237561  237565  237567  237571  237573  237577  237583  237585  237591  237595  237597  237601  237607  237613  237615  237621  237625  237627  237633  237637  237643  237651  266669 

科目: 来源: 题型:填空题

9.抛物线y2=2px(p>0)的一条弦AB过焦点F,且|AF|=2,|BF|=3,则抛物线的方程为y2=$\frac{24}{5}x$.

查看答案和解析>>

科目: 来源: 题型:选择题

8.过椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的中心的弦为PQ,焦点为F1,F2,则△PQF1的最大面积是(  )
A.abB.bcC.caD.abc

查看答案和解析>>

科目: 来源: 题型:选择题

7.圆x2+y2=1与直线xsinθ+y-1=0的位置关系为(  )
A.相交B.相切C.相离D.相切或相交

查看答案和解析>>

科目: 来源: 题型:选择题

6.点P(1,-1)到直线ax+3y+2a-6=0的距离的最大值为(  )
A.$2\sqrt{2}$B.$2\sqrt{3}$C.$3\sqrt{2}$D.$3\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知椭圆$\frac{x^2}{100}+\frac{y^2}{36}=1$的两个焦点为F1、F2,过F2引一条斜率不为零的直线与椭圆交于点A、B,则三角形ABF1的周长是(  )
A.20B.24C.32D.40

查看答案和解析>>

科目: 来源: 题型:选择题

4.设复数z=$\frac{2+i}{(1+i)^{2}}$(i为虚数单位),则z的虚部是(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目: 来源: 题型:解答题

3.写出下列命题p的否定¬p,并判断命题¬p的真假:
(1)p:?x∈R,x2+x+1>0;
(2)$p:?{x_0},{y_0}∈R,\sqrt{{{({{x_0}-1})}^2}}+{({{y_0}+1})^2}=0$.

查看答案和解析>>

科目: 来源: 题型:选择题

2.在△ABC中,AB=BC=3,∠BAC=30°,CD是AB边上的高,则$\overrightarrow{CD}•\overrightarrow{CB}$=(  )
A.$-\frac{9}{4}$B.$\frac{9}{4}$C.$\frac{27}{4}$D.$-\frac{27}{4}$

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,$\overrightarrow{a}$($\overrightarrow{b}-\overrightarrow{a}$)=-3,则向量$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是 菱形,AC=6,$BD=6\sqrt{3}$,E是PB上任意一点.
(1)求证:AC⊥DE;
(2)当△AEC的面积最小时,求证:CE⊥面PAB
(3)当△AEC的面积最小值为9时,问:线段BC上是否存在点G,使EG与平面PAB所成角的正切值为2?若存在,求出BG的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案