相关习题
 0  237458  237466  237472  237476  237482  237484  237488  237494  237496  237502  237508  237512  237514  237518  237524  237526  237532  237536  237538  237542  237544  237548  237550  237552  237553  237554  237556  237557  237558  237560  237562  237566  237568  237572  237574  237578  237584  237586  237592  237596  237598  237602  237608  237614  237616  237622  237626  237628  237634  237638  237644  237652  266669 

科目: 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别是F1、F2,离心率为$\frac{1}{2}$,以原点O为圆心,椭圆C的短半轴长为半径的圆与直线x+$\sqrt{2}$y-3=0相切.
(1)求椭圆C的标准方程;
(2)动直线l;y=kx+m与椭圆C相切,分别过点F1、F2作直线垂直于l,垂足分别为D、E,求|F1D|+|F2E|的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.在一次水下考古活动中,某一潜水员需潜水50米到水底进行考古作业.其用氧量包含一下三个方面:①下潜平均速度为x米/分钟,每分钟用氧量为$\frac{1}{100}$x2升;②水底作业时间范围是最少10分钟最多20分钟,每分钟用氧量为0.3升;③返回水面时,平均速度为$\frac{1}{2}$x米/分钟,每分钟用氧量为0.32升.潜水员在此次考古活动中的总用氧量为y升.
(1)如果水底作业时间是10分钟,将y表示为x的函数;
(2)若x∈[6,10],水底作业时间为20分钟,求总用氧量y的取值范围;
(3)若潜水员携带氧气13.5升,请问潜水员最多在水下多少分钟(结果取整数)?

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,D是△ABC内一点,角A,B,C的对边分别是a,b,c,且满足∠D=2∠B,cos∠D=-$\frac{1}{3}$,AD=2,△ACD的面积是4$\sqrt{2}$.
(1)求线段AC的长;
(2)若BC=4$\sqrt{3}$,求线段AB的长.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}{-\frac{1}{3}{x}^{2}+3,x∈[-3,0]}\\{\sqrt{9-{x}^{2}},x∈(0,3]}\end{array}\right.$,则${∫}_{-3}^{3}$f(x)dx=6+$\frac{9π}{4}$.

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知函数f(x)的定义域为R,f′(x)为函数f(x)的导函数,当x∈[0.+∞)时,2sinxcosx-f′(x)>0且?x∈R,f(-x)+f(x)+cos2x=1.则下列说法一定正确的是(  )
A.$\frac{1}{4}$-f(-$\frac{5π}{6}$)>$\frac{3}{4}$-f(-$\frac{2π}{3}$)B.$\frac{1}{4}$-f(-$\frac{5π}{6}$)>$\frac{3}{4}$-f(-$\frac{4π}{3}$)
C.$\frac{3}{4}$-f($\frac{π}{3}$)>$\frac{1}{2}$-f($\frac{3π}{4}$)D.$\frac{1}{2}$-f(-$\frac{3π}{4}$)>$\frac{3}{4}$-f($\frac{π}{3}$)

查看答案和解析>>

科目: 来源: 题型:解答题

14.在如图所示的多面体ABCDE中,四边形ABCF为平行四边形,F为DE的中点,△BCE为等腰直角三角形,BE为斜边,△BDE为正三角形,CD=CE=2.
(1)证明:CD⊥BE;
(2)求四面体ABDE的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

13.求实数m的取值范围,使关于x的方程x2-mx-m+3=0分别满足下列条件:
(1)一根大于1,一根小于1;
(2)两根都小于5;
(3)一根在(0,1),一根在(1,2);
(4)两根都在[-4,0];
(5)一根小于0,一根大于2.

查看答案和解析>>

科目: 来源: 题型:解答题

12.30岁以后,随着年龄的增长,人们的身体机能在逐渐退化,所以打针 买保健品这样的“健康消费”会越来越多,现对某地区不同年龄段的一些人进行了调查,得到其一年内平均“健康消费”如表:
年龄(岁)3035404550
健康消费(百元)58101418
(1)求“健康消费”y关于年龄x的线性回归方程;
(2)由(1)所得方程,估计该地区的人在60岁时的平均“健康消费”.
(附:线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值)

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图所示的三棱台ABC-A1B1C1中,AA1⊥平面ABC,AB⊥BC,AA1=1,AB=2,BC=4,∠ABB1=45°.
(1)证明:AB1⊥平面BCC1B1
(2)若点D为BC中点,求点C到平面AB1D的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

10.在平面直角坐标系xoy中,点P到两点(0,-$\sqrt{2}$)、(0,$\sqrt{2}$)的距离之和等于4,设点P的轨迹为C.
(1)求C的方程;
(2)过A(1,$\sqrt{2}$)作倾斜角互补的两条直线分别与椭圆C交于异于A的另外两点B,D,证明:直线BD的斜率为定值,并求出这个定值;
(3)在(2)的条件下,△ABD的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案