相关习题
 0  237469  237477  237483  237487  237493  237495  237499  237505  237507  237513  237519  237523  237525  237529  237535  237537  237543  237547  237549  237553  237555  237559  237561  237563  237564  237565  237567  237568  237569  237571  237573  237577  237579  237583  237585  237589  237595  237597  237603  237607  237609  237613  237619  237625  237627  237633  237637  237639  237645  237649  237655  237663  266669 

科目: 来源: 题型:填空题

9.已知点A(0,1),直线l1:x-y-1=0,直线l2:x-2y+2=0,则点A关于直线l1的对称点B的坐标为(2,-1),直线l2关于直线l1的对称直线方程是2x-y-5=0.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图所示,某工厂要设计一个三角形原料,其中AB=$\sqrt{3}$AC.
(1)若BC=2,求△ABC的面积的最大值;
(2)若△ABC的面积为1,问∠BAC=θ为何值时BC取得最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

7.设a<0,(3x2+a)(2x+b)≥0在(a,b)上恒成立,则b-a的最大值为$\frac{1}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知平面区域Ω:$\left\{\begin{array}{l}{3x+4y-18≤0}\\{x≥2}\\{y≥0}\end{array}\right.$夹在两条斜率为-$\frac{3}{4}$的平行直线之间,且这两条平行直线间的最短距离为m,若点P(x,y)∈Ω,且mx-y的最小值为p,$\frac{y}{x+m}$的最大值为q,则pq等于$\frac{27}{22}$.

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知等差数列{an}满足${a_3}=7,{a_5}+{a_7}=26,{b_n}=\frac{1}{{{a_n}^2-1}}(n∈{N^*})$,数列{bn}的前n项和为Sn,则S100的值为$\frac{25}{101}$.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知$α,β∈({0,\frac{π}{2}})$,且$\frac{sinβ}{sinα}=cos({α+β})$,
(1)若 $α=\frac{π}{6}$,则tanβ=$\frac{\sqrt{3}}{5}$;
(2)tanβ的最大值为$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目: 来源: 题型:填空题

3.已知函数$f(x)=2cos(x+\frac{π}{3})$,$x∈[-\frac{π}{2},\frac{π}{3}]$,则f(x)的值域是[-1,2].

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知复数z=$\frac{i}{\sqrt{3}+i}$(i为虚数单位),则z•$\overline{z}$=$\frac{1}{4}$.

查看答案和解析>>

科目: 来源: 题型:填空题

1.设$f(x)=\left\{{\begin{array}{l}{{x^2},x∈[0,1)}\\{2-x,x∈[1,2]}\end{array}}\right.$,则$\int_0^2{f(x)dx=}$$\frac{5}{6}$.

查看答案和解析>>

科目: 来源: 题型:选择题

20.若$\overrightarrow{a}$=(a1,a2),$\overrightarrow{b}$=(b1,b2),定义一种向量积:$\overrightarrow{a}$?$\overrightarrow{b}$=(a1b1,a2b2),已知$\vec m=(1,\frac{1}{2}),\vec n=(0,1)$,且点P(x,y)在函数$y=sin\frac{x}{2}$的图象上运动,点q在函数y=f(x)的图象上运动,且点p和点q满足:$\overrightarrow{OQ}$=$\overrightarrow{m}$?$\overrightarrow{OP}$+$\overrightarrow{n}$(其中O为坐标原点),则函数y=f(x)的最大值A及最小正周期T分别为(  )
A.1,πB.1,4πC.$\frac{3}{2},π$D.$\frac{3}{2},4π$

查看答案和解析>>

同步练习册答案