相关习题
 0  237512  237520  237526  237530  237536  237538  237542  237548  237550  237556  237562  237566  237568  237572  237578  237580  237586  237590  237592  237596  237598  237602  237604  237606  237607  237608  237610  237611  237612  237614  237616  237620  237622  237626  237628  237632  237638  237640  237646  237650  237652  237656  237662  237668  237670  237676  237680  237682  237688  237692  237698  237706  266669 

科目: 来源: 题型:选择题

12.设i为虚数单位,则$\frac{3-i}{i}$=(  )
A.-1-3iB.1-3iC.-1+3iD.1+3i

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知椭圆C的中心在原点O,焦点在x轴上,离心率为$\frac{1}{2}$,右焦点到右顶点的距离为1.
(1)求椭圆C的标准方程;
(2)是否存在与椭圆C交于A、B两点的直线l:y=kx+m(k∈R),使得以AB为直径的圆过原点?若存在,求出实数m的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

10.某校在一次高三年级“诊断性”测试后,对该年级的500名考生的成绩进行统计分析,成绩的频率分布表及频率分布直方图如图所示,规定成绩不小于130分为优秀.
(1)若用分层抽样的方法从这500人中抽取5人的成绩进行分析,求其中成绩为优秀的学生人数;
(2)在(1)中抽取的5名学生中,要随机抽取2名学生参加分析座谈会,求恰有1人成绩为优秀的概率.
区间人数
[115,120)25
[120,125)a
[125,130)175
[130,135)150
[135,140)b

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知$\overrightarrow{OA}$=(cos2x,-1),$\overrightarrow{OB}$=(1,sin2x+$\sqrt{3}$sin2x)(x∈R),若f(x)=$\overrightarrow{OA}$•$\overrightarrow{OB}$,则函数f(x)的最小正周期(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目: 来源: 题型:解答题

8.某种多面体玩具共有12个面,在其十二个面上分别标有数字1,2,3,…,12.若该玩具质地均匀,则抛掷该玩具后,任何一个数字所在的面朝上的概率均相等.抛掷该玩具一次,记事件A=“向上的面标记的数字是完全平方数(记能写出整数的平方形式的数,如9=32,9是完全平方数)”
(1)甲、乙二人利用该玩具进行游戏,并规定:
①甲抛掷一次,若事件A发生,则向上一面的点数的6倍为甲的得分;若事件A不发生,则甲得0分;②乙抛掷一次,将向上的一面对应的数字作为乙的得分;
(ⅰ) 甲、乙二人各抛掷该玩具一次,求二人得分的期望;
(ⅱ)甲、乙二人各抛掷该玩具一次,求甲的得分不低于乙的概率;
(2)抛掷该玩具一次,记事件B=“向上一面的点数不超过k(1≤k≤12)”,若事件A与B相互独立,试求出所有的整数k.

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知函数$f(x)=xcosx-\frac{a}{x}sinx-sinx,x∈({-kπ,0})∪({0,kπ})$(其中k为正整数,a∈R,a≠0),则f(x)的零点个数为(  )
A.2k-2B.2kC.2k-1D.与a有关

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,已知圆E:${x^2}+{({y-\frac{1}{2}})^2}=\frac{9}{4}$经过椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左右焦点F1,F2,与椭圆C在第一象限的交点为A,且F1,E,A三点共线.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设与直线OA(O为原点)平行的直线l交椭圆C于M,N两点.当△AMN的面积取到最大值时,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

5.2015年12月,京津冀等地数城市指数“爆表”,北方此轮污染为2015年以来最严重的污染过程.为了探究车流量与PM2.5的浓度是否相关,现采集到北方某城市2015年12月份某星期星期一到星期日某一时间段车流量与PM2.5的数据如表:
时间星期一星期二星期三星期四星期五星期六星期七
车流量x(万辆)1234567
PM2.5的浓度y(微克/立方米)28303541495662
(Ⅰ)由散点图知y与x具有线性相关关系,求y关于x的线性回归方程;
(Ⅱ)(ⅰ)利用(Ⅰ)所求的回归方程,预测该市车流量为8万辆时PM2.5的浓度;
(ⅱ)规定:当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良.为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数.)
参考公式:回归直线的方程是$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知$α∈({0,\frac{π}{4}})$,$sin({α+\frac{π}{4}})=\frac{4}{5}$,则tanα=$\frac{1}{7}$.

查看答案和解析>>

科目: 来源: 题型:填空题

3.若曲线y=lnx+ax2-2x(a为常数)不存在斜率为负数的切线,则实数a的取值范围是[$\frac{1}{2}$,+∞).

查看答案和解析>>

同步练习册答案