相关习题
 0  237525  237533  237539  237543  237549  237551  237555  237561  237563  237569  237575  237579  237581  237585  237591  237593  237599  237603  237605  237609  237611  237615  237617  237619  237620  237621  237623  237624  237625  237627  237629  237633  237635  237639  237641  237645  237651  237653  237659  237663  237665  237669  237675  237681  237683  237689  237693  237695  237701  237705  237711  237719  266669 

科目: 来源: 题型:填空题

2.将函数f(x)=sinx的图象向右平移$\frac{π}{3}$个单位后得到函数y=g(x)的图象,则函数y=f(x)+g(x)的最大值为$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

1.记公比为正数的等比数列{an}的前n项和为Sn.若a1=1,S4-5S2=0,则S5的值为31.

查看答案和解析>>

科目: 来源: 题型:填空题

20.下表是关于青年观众的性别与是否喜欢戏剧的调查数据,人数如表所示:
不喜欢戏剧喜欢戏剧
男性青年观众4010
女性青年观众4060
现要在所有参与调查的人中用分层抽样的方法抽取n个人做进一步的调研,若在“不喜欢戏剧的男性青年观众”的人中抽取了8人,则n的值为30.

查看答案和解析>>

科目: 来源: 题型:填空题

19.某校有三个兴趣小组,甲、乙两名学生每人选择其中一个参加,且每人参加每个兴趣小组的可能性相同,则甲、乙不在同一兴趣小组的概率为$\frac{2}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

18.若复数z满足z(1-i)=2i(i是虚数单位),$\overline{z}$是z的共轭复数,则$\overline{z}$=-1-i.

查看答案和解析>>

科目: 来源: 题型:解答题

17.在平面直角坐标系xOy中,以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C1,C2的极坐标方程分别为ρ=2sinθ,ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$.
(Ⅰ)求C1和C2交点的极坐标;
(Ⅱ)直线l的参数方程为:$\left\{\begin{array}{l}{x=-\sqrt{3}+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数),直线l与x轴的交点为P,且与C1交于A,B两点,求|PA|+|PB|.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=lnx+$\frac{1}{2}$ax2-x-m(m∈Z).
(Ⅰ)若f(x)是增函数,求a的取值范围;
(Ⅱ)若a<0,且f(x)<0恒成立,求m最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.在平面直角坐标系xOy中,已知圆O1:(x+1)2+y2=1和O2:(x-1)2+y2=9,动圆P与圆O1外切,与圆O2内切.
(Ⅰ)求圆心P的轨迹E的方程;
(Ⅱ)过A(-2,0)作两条互相垂直的直线l1,l2分别交曲线E于M,N两点,设l1的斜率为k(k>0),△AMN的面积为S,求$\frac{S}{k}$的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

14.某校为指导学生合理选择文理科的学习,根据数理综合测评成绩,按6分为满分进行折算后,若学生成绩小于m分别建议选择文科,不低于m分则建议选择理科(这部分学生称为候选理科生).现从该校高一随机抽取500名学生的数理综合成绩作为样本,整理得到分数的频率分布直方图(如图所示).
(Ⅰ)求直方图中的t值;
(Ⅱ)根据此次测评,为使80%以上的学生选择理科,整理m至多定为多少?
(Ⅲ)若m=4,试估计该校高一学生中候选理科学生的平均成绩?(精确到0.01)

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知Sn为数列{an}的前n项和,且Sn=2an-λ(λ是非零常数).
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=2an+(-1)nlog2an,当a1=1时,求数列{bn}的前2n项和.

查看答案和解析>>

同步练习册答案