相关习题
 0  237555  237563  237569  237573  237579  237581  237585  237591  237593  237599  237605  237609  237611  237615  237621  237623  237629  237633  237635  237639  237641  237645  237647  237649  237650  237651  237653  237654  237655  237657  237659  237663  237665  237669  237671  237675  237681  237683  237689  237693  237695  237699  237705  237711  237713  237719  237723  237725  237731  237735  237741  237749  266669 

科目: 来源: 题型:选择题

20.(文)某学校高一、高二、高三年级的学生人数之比为3:3:m,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,若从高三年级抽取的学生人数为20,则实数m=(  )
A.6B.5C.4D.3

查看答案和解析>>

科目: 来源: 题型:选择题

19.(文)已知是虚数单位,则$\frac{3+i}{1-i}$=(  )
A.1+2iB.2+iC.-1+iD.-1-i

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知集合$M=\{x|\frac{2x-1}{x+1}≤1\}$,N={x|-1<x<1},则(  )
A.M?NB.N?MC.M=ND.M∩N=∅

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,以原点为圆心,椭圆C的短半轴长为半径的圆与直线$x-y+\sqrt{2}=0$相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交与A,B两点,O为坐标原点,则在椭圆C上是否存在点P,使得四边形OAPB为平行四边形?请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,底面为平行四边形的四棱柱ABCD-A'B'C'D'中,DD'⊥平面ABCD,∠DAB=$\frac{π}{3}$,AB=2AD,DD'=3AD,E、F分别是线段AB、D'E的中点.
(Ⅰ)求证:CE⊥DF;
(Ⅱ)求二面角A-EF-C的余弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

15.点$M({x_0},\frac{3}{2})$是抛物线x2=2py(p>0)上一点,若点M到该抛物线焦点的距离为2,则点M到坐标原点的距离为$\frac{\sqrt{21}}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

14.设函数$f(x)=\frac{{6sinxcosx-4cosx{{sin}^3}x}}{{2\sqrt{2}+sin(2x+\frac{π}{4})+cos(2x+\frac{π}{4})}}$,则(  )
A.y=f(x)是偶函数,在$(0,\frac{π}{2})$上单调递增B.y=f(x)是奇函数,在$(0,\frac{π}{4})$上单调递增
C.y=f(x)是偶函数,在$(0,\frac{π}{2})$上单调递减D.y=f(x)是奇函数,在$(0,\frac{π}{4})$上单调递减

查看答案和解析>>

科目: 来源: 题型:选择题

13.设F(c,0)是双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点,$P(\frac{a^2}{c},\frac{{\sqrt{2}a}}{2})$为直线上一点,且直线垂直于x轴,垂足为M,若△PMF等腰三角形,则E的离心率为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

12.甲、乙两人做石头、剪刀、布(石头-剪刀,石头赢;剪刀-布,剪刀赢;布-石头,布赢;两人出拳一样为平局)的猜拳游戏,则甲不赢的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

11.(理)设θ为直线$x-\sqrt{3}y-1=0$的倾斜角,则$sin(θ+\frac{π}{4})$=(  )
A.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$B.$\frac{{\sqrt{6}+1}}{4}$C.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$D.$\frac{{\sqrt{2}-\sqrt{6}}}{4}$

查看答案和解析>>

同步练习册答案