相关习题
 0  237578  237586  237592  237596  237602  237604  237608  237614  237616  237622  237628  237632  237634  237638  237644  237646  237652  237656  237658  237662  237664  237668  237670  237672  237673  237674  237676  237677  237678  237680  237682  237686  237688  237692  237694  237698  237704  237706  237712  237716  237718  237722  237728  237734  237736  237742  237746  237748  237754  237758  237764  237772  266669 

科目: 来源: 题型:解答题

3.某校为了了解A,B两班学生寒假期间观看《中国诗词大会》的时长,分别从这两个班中随机抽取5名学生进行调查,将他们观看的时长(单位:小时)作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).
(1)分别求出图中所给两组样本数据的平均值,并据此估计哪个班的学生平均观看的时间较长;
(2)从A班的样本数据中随机抽取一个不超过19的数据记为a,从B班的样本数据中随机抽取一个不超过21的数据记为b,求a>b的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知抛物线y2=4x,圆F:(x-1)2+y2=1,直线y=k(x-1)自上而下顺次与上述两曲线交于点A,B,C,D,则|AB||CD|的值是1.

查看答案和解析>>

科目: 来源: 题型:填空题

1.设函数$f(x)=sin(2x+φ)(|φ|<\frac{π}{2})$向左平移$\frac{π}{3}$单位后得到的函数是一个偶函数,则φ=-$\frac{π}{6}$.

查看答案和解析>>

科目: 来源: 题型:填空题

20.在数列{an}中,a1=2,an+1=3an,(n∈N*),则a4=54.

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知定义在$(0,\frac{π}{2})$上的函数,f′(x)为其导函数,且$\frac{f(x)}{sinx}<\frac{{{f^'}(x)}}{cosx}$恒成立,则(  )
A.$f(\frac{π}{2})>2f(\frac{π}{6})$B.$\sqrt{3}f(\frac{π}{4})>\sqrt{2}f(\frac{π}{3})$C.$\sqrt{3}f(\frac{π}{6})<f(\frac{π}{3})$D.$f(1)<2f(\frac{π}{6})sin1$

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知圆C的圆心在坐标轴上,且经过点(6,0)及椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$的两个顶点,则该圆的标准方程为(  )
A.(x-2)2+y2=16B.x2+(y-6)2=72C.${(x-\frac{8}{3})^2}+{y^2}=\frac{100}{9}$D.${(x+\frac{8}{3})^2}+{y^2}=\frac{100}{9}$

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知$a={(\sqrt{2})^{\frac{4}{3}}}$,$b={2^{\frac{2}{5}}}$,$c={9^{\frac{1}{3}}}$,则(  )
A.b<a<cB.a<b<cC.b<c<aD.c<a<b

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知$\overrightarrow a=(1,2)$,$\overrightarrow b=(m,1)$,且$\overrightarrow a⊥\overrightarrow b$,则m的值为(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,F1、F2分别是椭圆的左、右焦点,M为椭圆上除长轴端点外的任意一点,且△MF1F2的周长为4+2$\sqrt{3}$.
(1)求椭圆C的方程;
(2)过点D(0,-2)作直线l与椭圆C交于A、B两点,点N满足$\overrightarrow{ON}=\overrightarrow{OA}+\overrightarrow{OB}$(O为原点),求四边形OANB面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

14.一个正四面体的“骰子”(四个面分别标有1,2,3,4四个数字),掷一次“骰子”三个侧面的数字的和为“点数”,连续抛掷“骰子”两次.
(1)设A为事件“两次掷‘骰子’的点数和为16”,求事件A发生的概率;
(2)设X为两次掷“骰子”的点数之差的绝对值,求随机变量X的分布列和数学期望.

查看答案和解析>>

同步练习册答案