相关习题
 0  237582  237590  237596  237600  237606  237608  237612  237618  237620  237626  237632  237636  237638  237642  237648  237650  237656  237660  237662  237666  237668  237672  237674  237676  237677  237678  237680  237681  237682  237684  237686  237690  237692  237696  237698  237702  237708  237710  237716  237720  237722  237726  237732  237738  237740  237746  237750  237752  237758  237762  237768  237776  266669 

科目: 来源: 题型:填空题

3.在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,则$\overrightarrow{BD}$•$\overrightarrow{AC}$=-32.

查看答案和解析>>

科目: 来源: 题型:选择题

2.若函数g(x)满足g(g(x))=n(n∈N)有n+3个解,则称函数g(x)为“复合n+3解”函数.已知函数f(x)=$\left\{\begin{array}{l}{kx+3,x≤0}\\{\frac{{e}^{x-1}}{x}},x>0\end{array}\right.$(其中e是自然对数的底数,e=2.71828…,k∈R),且函数f(x)为“复合5解”函数,则k的取值范围是(  )
A.(-∞,0)B.(-e,e)C.(-1,1)D.(0,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

1.当函数f(x)=$\sqrt{3}$sinx+cosx-t(t∈R)在闭区间[0,2π]上,恰好有三个零点时,这三个零点之和为(  )
A.$\frac{10π}{3}$B.$\frac{8π}{3}$C.$\frac{7π}{3}$D.

查看答案和解析>>

科目: 来源: 题型:选择题

20.设a=($\frac{5}{3}$)${\;}^{\frac{1}{6}}$,b=($\frac{3}{5}$)${\;}^{-\frac{1}{5}}$,c=ln$\frac{5}{3}$,则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.b>c>aD.a>c>b

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知数列{an}的前n项和Sn满足Sn+Sm=Sn+m(n,m∈N*)且a1=5,则a8=(  )
A.40B.35C.12D.5

查看答案和解析>>

科目: 来源: 题型:选择题

18.甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,σ12)及N(μ2,σ22),其正态分布的密度曲线如图所示,则下列说法错误的是(  )
A.乙类水果的质量服从的正态分布的参数σ2=1.99
B.甲类水果的质量比乙类水果的质量更集中
C.甲类水果的平均质量μ1=0.4kg
D.甲类水果的平均质量比乙类水果的平均质量小

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知复数z满足z(1-i)2=1+i(i为虚数单位),则z=(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}$iC.-$\frac{1}{2}$+$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知关于x的不等式|x-m|≤n的解集为{x|0≤x≤4}.
(1)求实数m、n的值;
(2)设a>0,b>0,且a+b=$\frac{m}{a}$+$\frac{n}{b}$,求a+b的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图所示,已知AB为⊙O的直径,PB、PN都是⊙O的切线,切点分别为B、N,PN交BA的延长线于点M.
(1)求证:AN∥OP;
(2)若AB=4$\sqrt{3}$,BP=6,求证:MN=NP.

查看答案和解析>>

科目: 来源: 题型:填空题

14.设平面向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|、|$\overrightarrow{b}$|、|$\overrightarrow{a}$-$\overrightarrow{b}$|∈[2,6],则$\overrightarrow{a}$•$\overrightarrow{b}$的取值范围为[-14,34].

查看答案和解析>>

同步练习册答案