相关习题
 0  237587  237595  237601  237605  237611  237613  237617  237623  237625  237631  237637  237641  237643  237647  237653  237655  237661  237665  237667  237671  237673  237677  237679  237681  237682  237683  237685  237686  237687  237689  237691  237695  237697  237701  237703  237707  237713  237715  237721  237725  237727  237731  237737  237743  237745  237751  237755  237757  237763  237767  237773  237781  266669 

科目: 来源: 题型:解答题

16.已知双曲线H:$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{3}$=1(m>0)的右焦点到直线l:4x-3y-18=0的距离为2,且双曲线的实轴长小于4,椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与直线l交于点A(n,-2),直线l1:x=$\sqrt{3}$被椭圆E截得的弦长为4$\sqrt{2}$.
(1)求双曲线H的标准方程和渐近线方程;
(2)求椭圆E的标准方程和焦点坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

15.在直角坐标系xoy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=1+cosβ\\ y=sinβ\end{array}$(β为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4cosθ.
(Ⅰ)将曲线C1的方程化为极坐标方程;
(Ⅱ)已知直线l的参数方程为$\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}$($\frac{π}{2}$<α<π,t为参数,t≠0),l与C1交与点A,l与C2交与点B,且|AB|=$\sqrt{3}$,求α的值.

查看答案和解析>>

科目: 来源: 题型:填空题

14.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同,现了解到已下情况:
(1)甲不是最高的;(2)最高的是没报铅球;(3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步.
可以判断丙参加的比赛项目是跑步.

查看答案和解析>>

科目: 来源: 题型:解答题

13.在直角坐标系xoy中圆C的参数方程为$\left\{\begin{array}{l}x=2+3cosα\\ t=3sinα\end{array}\right.$(α为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为$θ=\frac{π}{4}({ρ∈R})$.
(1)求圆C的直角坐标方程及其圆心C的直角坐标;
(2)设直线l与曲线C交于A,B两点,求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知$\frac{sinα-cosα}{2sinα+3cosα}$=$\frac{1}{5}$,求tanα的值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.有两种规格的矩形钢板,甲型的宽度为a,乙型的宽度为2a,长度可以足够长,厚度不计,现把它们切割后拼接成一个角形钢板,焊缝为OM,记∠AOB=θ(0°<θ<180°).
(1)若θ=135°,求tan∠AOM的值
(2)把OM的长度用θ表示,并求OM的最小值

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知A(6,3),B(2,3),C(4,1)和D(5,m)四点在同一圆周上,求
(1)圆的方程;
(2)m的值.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知α为第二象限角.且sin2α=-$\frac{24}{25}$,则cosα-sinα的值为(  )
A.$\frac{7}{5}$B.-$\frac{7}{5}$C.$\frac{1}{5}$D.-$\frac{1}{5}$

查看答案和解析>>

科目: 来源: 题型:填空题

8.已知$\frac{1+sin2θ+cos2θ}{1+sin2θ-cos2θ}$=$\frac{3}{5}$,则tanθ=$\frac{5}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

7.设函数f(x)=lnx-$\frac{{x}^{2}-a}{x}$,a为常数.
(1)求证:x≥lnx+1;
(2)当a=0时,求y=f(x)•f($\frac{1}{x}$)的最小值;
(3)若不等式f(x)<(a-1)x对?x∈(1,+∞)恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案