相关习题
 0  237604  237612  237618  237622  237628  237630  237634  237640  237642  237648  237654  237658  237660  237664  237670  237672  237678  237682  237684  237688  237690  237694  237696  237698  237699  237700  237702  237703  237704  237706  237708  237712  237714  237718  237720  237724  237730  237732  237738  237742  237744  237748  237754  237760  237762  237768  237772  237774  237780  237784  237790  237798  266669 

科目: 来源: 题型:解答题

6.随着教育制度和高考考试制度的改革,高校选拔人才的方式越来越多.某高校向一基地 学校投放了一个保送生名额,先由该基地学校初选出10名优秀学生,然后参与高校设置的 考核,考核设置了难度不同的甲、乙两个方案,每个方案都有M(文化)、N(面试)两个考核内 容,最终选择考核成绩总分第一名的同学定为该高校在基地校的保送生.假设每位同学完成 每个方案中的M、N两个考核内容的得分是相互独立的.根据考核前的估计,某同学完成甲 方案和乙方案的M、N两个考核内容的情况如表:
表1:甲方案
考核内容M(文化)N(面试)
得分100805020
概率$\frac{3}{4}$$\frac{1}{4}$$\frac{3}{4}$$\frac{1}{4}$
表2:乙方案
考核内容M(文化)N(面试)
得分90603010
概率$\frac{9}{10}$$\frac{1}{10}$$\frac{9}{10}$$\frac{1}{10}$
已知该同学最后一个参与考核,之前的9位同学的最高得分为125分.
(I)若该同学希望获得保送资格,应该选择哪个方案?请说明理由,并求其在该方案下 获得保送资格的概率;
(II)若该同学选用乙方案,求其所得成绩X的分布列及其数学期望EX.

查看答案和解析>>

科目: 来源: 题型:解答题

5.在△ABC中,a,b,c分别是角A,B,C的对边,若a=$\sqrt{5}$,b=4,且△ABC的面积S=$\overrightarrow{BA}$•$\overrightarrow{BC}$.
(I)求sinB的值;
(II)设函数f(x)=2sinAcos2x-cosAsin2x-$\frac{1}{2}$,x∈R,求f(x)的单调递增区间.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知数列{an}的前n项和为Sn,且3Sn=2×4n-2,n∈N*
(I)求数列{an}的通项公式an
(II)设数列{bn}满足bn=log2an,求Tn=$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$的表达式(用含n的代数式表示).

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知角α的终边与单位圆交于点(-$\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$),则sin2α的值为(  )
A.$\frac{\sqrt{5}}{5}$B.-$\frac{\sqrt{5}}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

2.设圆:x2+y2+2y-3=0与y轴交于A(0,y1),B(0,y2)两点,则y1y2 的值为(  )
A.3B.-3C.2D.-2

查看答案和解析>>

科目: 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a+b)cosC+ccosB=0
(Ⅰ)求角C的大小.
(Ⅱ)若c=6,求△ABC面积的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

20.${log_2}\frac{1}{4}+{log_2}32$=3.

查看答案和解析>>

科目: 来源: 题型:选择题

19.“2x>1”是“x>1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知i是虚数单位,复数$\frac{1+3i}{1+i}$=(  )
A.2+iB.2-iC.-1+iD.-1-i

查看答案和解析>>

科目: 来源: 题型:填空题

17.二项式${(\frac{2}{x}+x)^4}$的展开式中常数项为24.

查看答案和解析>>

同步练习册答案