相关习题
 0  237606  237614  237620  237624  237630  237632  237636  237642  237644  237650  237656  237660  237662  237666  237672  237674  237680  237684  237686  237690  237692  237696  237698  237700  237701  237702  237704  237705  237706  237708  237710  237714  237716  237720  237722  237726  237732  237734  237740  237744  237746  237750  237756  237762  237764  237770  237774  237776  237782  237786  237792  237800  266669 

科目: 来源: 题型:选择题

6.设等差数列{an}的前n项和为Sn,若S9=54,则a2+a4+a9=(  )
A.9B.15C.18D.36

查看答案和解析>>

科目: 来源: 题型:解答题

5.设|a|<1,函数f(x)=ax2+x-a(-1≤x≤1),证明:|f(x)|≤$\frac{5}{4}$.

查看答案和解析>>

科目: 来源: 题型:解答题

4.在抛物线y2=4a(x+a)(a>0),设有过原点O作一直线分别交抛物线于A、B两点,如图所示,试求|OA|•|OB|的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

3.如图,ABC-A1B1C1是直三棱柱,∠BCA=90°,点E、F分别是A1B1、A1C1的中点,若BC=CA=AA1,则BE与AF所成角的余弦值为$\frac{\sqrt{30}}{10}$.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率是$\frac{\sqrt{2}}{2}$,F1、F2是椭圆的左、右焦点,点A为椭圆的右顶点,点B为椭圆的上顶点,且S${\;}_{△AB{F}_{1}}$=$\frac{\sqrt{2}+1}{2}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若直线l过右焦点F2且交椭圆E于P、Q两点,点M是直线x=2上的任意一点,直线MP、MF2、MQ的斜率分别为k1、k2、k3,问是否存在常数λ,使得k1+k3=λk2成立?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

1.为响应阳光体育运动的号召,某县中学生足球活动正如火如荼的开展,该县为了解本县中学生的足球运动状况,根据性别采取分层抽样的方法从全县24000名中学生(其中男生14000人,女生10000人)中抽取120名,统计他们平均每天足球运动的时间,如表:(平均每天足球运动的时间单位为小时,该县中学生平均每天足球运动的时间范围是[0,3])
男生平均每天足球运动的时间分布情况:
平均每天足球运动的时间[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3]
人数23282210x
女生平均每天足球运动的时间分布情况:
平均每天足球运动的时间[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3]
人数51218103y
(Ⅰ)请根据样本估算该校男生平均每天足球运动的时间(结果精确到0.1);
(Ⅱ)若称平均每天足球运动的时间不少于2小时的学生为“足球健将”.低于2小时的学生为“非足球健将”.
①请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断,能否有90%的把握认为是否为“足球健将”与性别有关?
足球健将非足球健将总  计
男  生
女  生
总  计
②若在足球活动时间不足1小时的男生中抽取2名代表了解情况,求这2名代表都是足球运动时间不足半小时的概率.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2>k00.500.400.250.150.100.050.0250.010
  k00.4550.7081.3232.0722.7063.8415.0246.635

查看答案和解析>>

科目: 来源: 题型:选择题

20.执行如图所示的程序框图,则输出S的值为(  )
A.16B.32C.64D.1024

查看答案和解析>>

科目: 来源: 题型:选择题

19.对实数a与b,定义新运算“?”:a?b=$\left\{\begin{array}{l}{a,a-b≤1}\\{b,a-b>1}\end{array}\right.$.设函数f(x)=(x2-2)?(x-x2),x∈R.若函数y=f(x)-c的零点恰有两个,则实数c的取值范围是(  )
A.(-∞,-2]∪(-1,$\frac{3}{2}$)B.(-∞,-2]∪(-1,-$\frac{3}{4}$)C.(-∞,$\frac{1}{4}$)∪($\frac{1}{4}$,+∞)D.(-1,-$\frac{3}{4}$)∪[$\frac{1}{4}$,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知实数2,m,$\frac{9}{2}$依次构成一个等比数列,则圆锥曲线x2+$\frac{{y}^{2}}{m}$=1的离心率为(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{3}$或2D.$\frac{2\sqrt{3}}{3}$或2

查看答案和解析>>

科目: 来源: 题型:选择题

17.如图给出的是计算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{20}$的值的一个程序框图,其中判断框内应填入的条件是(  )
A.i>8B.i>9C.i>10D.i>11

查看答案和解析>>

同步练习册答案