相关习题
 0  237607  237615  237621  237625  237631  237633  237637  237643  237645  237651  237657  237661  237663  237667  237673  237675  237681  237685  237687  237691  237693  237697  237699  237701  237702  237703  237705  237706  237707  237709  237711  237715  237717  237721  237723  237727  237733  237735  237741  237745  237747  237751  237757  237763  237765  237771  237775  237777  237783  237787  237793  237801  266669 

科目: 来源: 题型:选择题

16.执行如图所示的程序框图,则输出s的值为(  )
A.$\sqrt{2018}-1$B.$\sqrt{2017}-1$C.$\sqrt{2016}-1$D.$\sqrt{2015}-1$

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知函数$f(x)=\left\{\begin{array}{l}1-{log_a}(x+2),x≥0\\ g(x),x<0\end{array}\right.$是奇函数,则方程g(x)=2的根为(  )
A.$-\frac{3}{2}$B.$\frac{3}{2}$C.6D.-6

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知函数g(x)=xsinθ-lnx-sinθ在[1,+∞)单调递增,其中θ∈(0,π)
(1)求θ的值;
(2)若$f(x)=g(x)+\frac{2x-1}{x^2}$,当x∈[1,2]时,试比较f(x)与${f^/}(x)+\frac{1}{2}$的大小关系(其中f′(x)是f(x)的导函数),请写出详细的推理过程;
(3)当x≥0时,ex-x-1≥kg(x+1)恒成立,求k的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知圆${E_2}:{x^2}+{y^2}=2$,将圆E2按伸缩变换:$\left\{\begin{array}{l}{x^/}=x\\{y^/}=\frac{{\sqrt{2}}}{2}y\end{array}\right.$后得到曲线E1
(1)求E1的方程;
(2)过直线x=2上的点M作圆E2的两条切线,设切点分别是A,B,若直线AB与E1交于C,D两点,求$\frac{|CD|}{|AB|}$的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

12.动点M(x,y)到点(2,0)的距离比到y轴的距离大2,则动点M的轨迹方程为y2=8x(x≥0)或y=0(x<0).

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知点P(x,y)的坐标满足条件$\left\{\begin{array}{l}x-y≤4\\ x+y≤0\\ x≥0\end{array}\right.$,若点O为坐标原点,点M(-1,-1),那么$\overrightarrow{OM}•\overrightarrow{OP}$的最大值等于4.

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知函数$f(x)=\frac{1}{3}m{x^3}+\frac{1}{2}n{x^2}+x+2017$,其中m∈{2,4,6,8},n∈{1,3,5,7},从这些函数中任取不同的两个函数,在它们在(1,f(1))处的切线相互平行的概率是(  )
A.$\frac{7}{120}$B.$\frac{7}{60}$C.$\frac{7}{30}$D.以上都不对

查看答案和解析>>

科目: 来源: 题型:选择题

9.三棱锥A-BCD中,AB,AC,AD两两垂直,其外接球半径为2,设三棱锥A-BCD的侧面积为S,则S的最大值为(  )
A.4B.6C.8D.16

查看答案和解析>>

科目: 来源: 题型:选择题

8.如图,圆锥的高$PO=\sqrt{2}$,底面⊙O的直径AB=2,C是圆上一点,且∠CAB=30°,D为AC的中点,则直线OC和平面PAC所成角的正弦值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目: 来源: 题型:填空题

7.图形的对称,正弦曲线的流畅都能体现“数学美”.“黄金分割”也是数学美得 一种体现,如图,椭圆的中心在原点,F为左焦点,当$\overrightarrow{FB}⊥\overrightarrow{AB}$时,其离心率为$\frac{{\sqrt{5}-1}}{2}$,此类椭圆被称为“黄金椭圆”,类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

同步练习册答案