相关习题
 0  237619  237627  237633  237637  237643  237645  237649  237655  237657  237663  237669  237673  237675  237679  237685  237687  237693  237697  237699  237703  237705  237709  237711  237713  237714  237715  237717  237718  237719  237721  237723  237727  237729  237733  237735  237739  237745  237747  237753  237757  237759  237763  237769  237775  237777  237783  237787  237789  237795  237799  237805  237813  266669 

科目: 来源: 题型:解答题

14.已知点A(0,2),B(4,4),$\overrightarrow{OM}={t_1}\overrightarrow{OA}+{t_2}\overrightarrow{AB}$;
(1)若点M在第二或第三象限,且t1=2,求t2取值范围;
(2)若t1=4cosθ,t2=sinθ,θ∈R,求$\overrightarrow{OM}$在$\overrightarrow{AB}$方向上投影的取值范围;
(3)若t1=a2,求当$\overrightarrow{OM}⊥\overrightarrow{AB}$,且△ABM的面积为12时,a和t2的值.

查看答案和解析>>

科目: 来源: 题型:解答题

13.若$\overrightarrow a$、$\overrightarrow b$是两个不共线的非零向量,
(1)若$\overrightarrow a$与$\overrightarrow b$起点相同,则实数t为何值时,$\overrightarrow{a}$、t$\overrightarrow b$、$\frac{1}{3}$$(\overrightarrow a+\vec b)$三个向量的终点A,B,C在一直线上?
(2)若|$\overrightarrow a$|=|$\overrightarrow b$|,且$\overrightarrow a$与$\overrightarrow b$夹角为60°,则实数t为何值时,|$\overrightarrow a-t\overrightarrow b$|的值最小?

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知直线l过点(0,-1)且被两条平行直线l1:2x+y-6=0和l2:4x+2y-5=0截得的线段长为$\frac{7}{2}$,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ(${\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|cosB}}$+$\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|cosC}}}$),λ∈(0,+∞),则动点P的轨迹一定通过△ABC的(  )
A.重心B.垂心C.外心D.内心

查看答案和解析>>

科目: 来源: 题型:填空题

10.设x,y满足约束条件$\left\{\begin{array}{l}x\;,\;y≥0\\ x-y≥-1\\ x+y≤3\end{array}\right.$,则z=x-2y的取值范围为[-3,3].

查看答案和解析>>

科目: 来源: 题型:填空题

9.已知△ABC是等腰直角三角形,AC=BC=2,则$\overrightarrow{AB}•\overrightarrow{BC}$=-4.

查看答案和解析>>

科目: 来源: 题型:填空题

8.直线l过点P(2,3)与以A(3,2),B(-1,-3)为端点的线段AB有公共点,则直线l倾斜角的取值范围是$[arctan2,\frac{3π}{4}]$.

查看答案和解析>>

科目: 来源: 题型:填空题

7.若直线l过点A(2,3)且点B(-3,2)到直线l的距离最大,则l的方程为5x+y-13=0.

查看答案和解析>>

科目: 来源: 题型:填空题

6.一个均匀小正方体的6个面中,三个面上标以数字0,两个面上标以数字1,一个面上标以数字2,将这个小正方体抛掷1次,则向上的数字为2的概率为$\frac{1}{6}$;将这个小正方体抛掷2次,则向上的数字之积的数学期望是$\frac{4}{9}$.

查看答案和解析>>

科目: 来源: 题型:填空题

5.在某次结对子活动中,有八位同学组成了四对“互助对子”他们排成一排合影留念,则使得每对“互助对子”中的两位同学都相邻的排列方法种数为384.

查看答案和解析>>

同步练习册答案