相关习题
 0  237690  237698  237704  237708  237714  237716  237720  237726  237728  237734  237740  237744  237746  237750  237756  237758  237764  237768  237770  237774  237776  237780  237782  237784  237785  237786  237788  237789  237790  237792  237794  237798  237800  237804  237806  237810  237816  237818  237824  237828  237830  237834  237840  237846  237848  237854  237858  237860  237866  237870  237876  237884  266669 

科目: 来源: 题型:选择题

1.设x,y∈R,则x>y>0是|x|>|y|的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目: 来源: 题型:解答题

20.设函数$f(x)=a{x^2}-\frac{1}{2}-lnx$,曲线y=f(x)在x=2处与直线2x+3y=0垂直.
(1)求函数f(x)的单调区间;
(2)当x>1时,证明f(x)>$\frac{1}{x}$-e1-x

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,三棱柱ABC-A1B1C1的底面是边长为2的等边三角形,AA1⊥底面ABC,点E,F分别是棱CC1,BB1上的点,且EC=B1F=2FB.
(1)证明:平面AEF⊥平面ACC1A1
(2)若AA1=3,求点E到平面ACF的距离.

查看答案和解析>>

科目: 来源: 题型:选择题

18.如图所示,某几何体的三视图中,正视图和侧视图都是腰长为1的等腰直角三角形,则该几何体的体积为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.1D.$1+\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知复数$\frac{1}{z}=-5i$,则$\overline z$等于(  )
A.-$\frac{i}{5}$B.$\frac{i}{5}$C.-$\frac{1}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知sinα>0,且$\frac{{2tan\frac{α}{2}}}{{1-{{tan}^2}\frac{α}{2}}}<0$,则α所在象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数$f(x)=16f'(2)lnx-\frac{1}{4}x+\frac{3}{4x}+2f(1)$.
(1)求函数f(x)的解析式和单调区间;
(2)设g(x)=-x2+2bx-4,若对任意x1∈(0,2),x2∈[1,2],不等式f(x1)≥g(x2)恒成立,求实数b的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

14.设非零向量$\overrightarrow c,\overrightarrow d$,规定:$\overrightarrow c?\overrightarrow d=|{\overrightarrow c}||{\overrightarrow d}|sinθ$(其中$θ=<\overrightarrow c,\overrightarrow d>$),F1、F2是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点,点A,B分别是椭圆C的右顶点、上顶点,若$\overrightarrow{OA}?\overrightarrow{OB}=2\sqrt{3}$,椭圆C的长轴的长为4.
(1)求椭圆C的方程;
(2)过点F2的直线l交椭圆C于点M,N,若$\overrightarrow{OM}?\overrightarrow{ON}=\frac{{12\sqrt{2}}}{7}$,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图是一几何体的直观图、主观图、俯视图、左视图.
(1)求该几何体的体积V;
(2)证明:BD∥平面PEC;
(3)求平面PEC与平面PDA所成的二面角(锐角)的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图所示,某班一次数学测试成绩的茎叶图(如图1)和频率分布直方图(如图2)都受到不同程度的污损,其中,频率分布直方图的分组区间分别为[50,60),[60,70),[70,80),[80,90),[90,100],据此解答如下问题.(注:直方图中[50,60)与[90,100]对应的长方形的高度一样)

(1)若按题中的分组情况进行分层抽样,共抽取16人,那么成绩在[80,90)之间应抽取多少人?
(2)现从分数在[80,100]之间的试卷中任取2份分析学生失分情况,设抽取的试卷分数在[90,100]之间 份数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案