相关习题
 0  237713  237721  237727  237731  237737  237739  237743  237749  237751  237757  237763  237767  237769  237773  237779  237781  237787  237791  237793  237797  237799  237803  237805  237807  237808  237809  237811  237812  237813  237815  237817  237821  237823  237827  237829  237833  237839  237841  237847  237851  237853  237857  237863  237869  237871  237877  237881  237883  237889  237893  237899  237907  266669 

科目: 来源: 题型:选择题

15.给出下列几个命题:
①命题p:任意x∈R,都有cosx≤1,则“非p”:存在x0∈R,使得cosx0≤1.
②命题“若a>2且b>2,则a+b>4且ab>4”的否命题为假命题.
③空间任意一点O和不共线的三点A、B、C,若$\overrightarrow{OP}$=2$\overrightarrow{OA}$-$\overrightarrow{OB}$+$\overrightarrow{OC}$,则P、A、B、C四点共面.
④线性回归方程y=bx+a对应的直线一定经过其样本数据点(x1,y1)、(x2,y2)、…,(xn,yn)中的一个.其中不正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知双曲线$\frac{y^2}{a}-\frac{x^2}{4}=1$的渐近线方程为$y=±\frac{{\sqrt{3}}}{2}x$,则此双曲线的离心率为(  )
A.$\frac{{\sqrt{7}}}{2}$B.$\frac{{\sqrt{13}}}{3}$C.$\frac{{\sqrt{21}}}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

13.如图,一个空间几何体正视图与左视图为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,那么这个几何体的表面积为(  )
A.πB.C.D.$π+\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知△ABC中,AD是BC边上的中线,且cos∠BAC=$\frac{4}{5}$,cosC=$\frac{5}{13}$,BC=26.
(1)求AB的长;      
(2)求cosB;      
(3)求AD的长.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知向量${\overrightarrow m_1}$=(0,x),${\overrightarrow n_1}$=(1,1),${\overrightarrow m_2}$=(x,0),${\overrightarrow n_2}$=(y2,1)(其中x,y是实数),又设向量$\overrightarrow m$=${\overrightarrow m_1}$+$\sqrt{2}$${\overrightarrow n_2}$,$\overrightarrow n$=${\overrightarrow m_2}$-$\sqrt{2}$${\overrightarrow n_1}$,且$\overrightarrow m$∥$\overrightarrow n$,点P(x,y)的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设直线l:y=kx+1与曲线C交于M、N两点,当|MN|=$\frac{{4\sqrt{2}}}{3}$时,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

10.如图,已知$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,任意点M关于点A的对称点为S,点S关于点B的对称点为N,则向量$\overrightarrow{MN}$=2$\overrightarrow{b}$-2$\overrightarrow{a}$(用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{MN}$)

查看答案和解析>>

科目: 来源: 题型:选择题

9.设F1,F2分别是椭圆:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过F1倾斜角为45°的直线l与该椭圆相交于P,Q两点,且|PQ|=$\frac{4}{3}$a.则该椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=sin4ωx-cos4ωx+2sinωxcosωx(ω>0),点M,N是f(x)图象的两个相邻的对称中心,点H是f(x)图象的一个最高点,三角形MNH的面积为$\frac{\sqrt{2}π}{4}$.
(1)求ω的值以及函数f(x)的单调递增区间;
(2)锐角三角形ABC,边c=2,所对角C满足f(C)=1,求其面积S的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知SA、SB、SC两两所成的角为60°,则平面SAB与平面SAC所成二面角的余弦值为$\frac{1}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知在四棱锥P-ABCD中,底面ABCD是直角梯形,∠BAD=90°,2AB=2AD=CD,侧面PAD是正三角形且垂直于底面ABCD,E是PC的中点.
(1)求证:BE⊥平面PCD;
(2)在PB上是否存在一点F,使AF∥平面BDE?

查看答案和解析>>

同步练习册答案