相关习题
 0  237742  237750  237756  237760  237766  237768  237772  237778  237780  237786  237792  237796  237798  237802  237808  237810  237816  237820  237822  237826  237828  237832  237834  237836  237837  237838  237840  237841  237842  237844  237846  237850  237852  237856  237858  237862  237868  237870  237876  237880  237882  237886  237892  237898  237900  237906  237910  237912  237918  237922  237928  237936  266669 

科目: 来源: 题型:解答题

20.已知数列{an}满足a1=2,点(an,an+1)在直线y=3x+2上,数列{bn}满足b1=2,$\frac{{b}_{n+1}}{{a}_{n+1}}$=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$
(1)求b2的值;
(2)求证数列{an+1}为等比数列,并求出数列{an}的通项公式;
(3)求证:2-$\frac{1}{2•{3}^{n-1}}$≤(1+$\frac{1}{{b}_{1}}$)(1+$\frac{1}{{b}_{2}}$)…(1+$\frac{1}{{b}_{n}}$)<$\frac{33}{16}$.

查看答案和解析>>

科目: 来源: 题型:填空题

19.今年冬天流感盛行,据医务室统计,北校近30天每天因病请假人数依次构成数列{an},已知a1=1,a2=2,且an+2-an=1+(-1)n (n∈N*),则这30天因病请假的人数共有255人.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数f(x)=$\frac{lnx}{x+1}$.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)对函数定义域内每一个实数x,f(x)+$\frac{t}{x}$≥$\frac{2}{x+1}$恒成立.
(1)求t的最小值;
(2)证明不等式lnn>$\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{n}(n∈{N^*}$且n≥2)

查看答案和解析>>

科目: 来源: 题型:解答题

17.在平面直角坐标系xOy中,已知M(-1,1),N(0,2),Q(2,0).
(1)求过M,N,Q三点的圆C1的标准方程;
(2)圆C1关于直线MN的对称圆为C2,求圆C2的标准方程.

查看答案和解析>>

科目: 来源: 题型:填空题

16.定义在关于原点对称区间上的任意一个函数,都可表示成“一个奇函数与一个偶函数的和(或差)”.设f(x)是定义域为R的任一函数,$F(x)=\frac{f(x)+f(-x)}{2}$,$G(x)=\frac{f(x)-f(-x)}{2}$,试判断F(x)与G(x)的奇偶性.现欲将函数f(x)=ln(ex+1)表示成一个奇函数g(x)和一个偶函数h(x)之和,则g(x)=$\frac{x}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知实数a,b,c满足${(\frac{1}{2})^a}$=3,log3b=-$\frac{1}{2}$,${(\frac{1}{3})^c}={log_2}$c,则实数a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.c<a<bD.b<c<a

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知某厂每天的固定成本是20000元,每天最大规模的产品量是360件.每生产一件产品,成本增加100元,生产x件产品的收入函数是R(x)=-$\frac{1}{2}{x^2}$+400x,记L(x),P(x)分别为每天的生产x件产品的利润和平均利润(平均利润=$\frac{总利润}{总产量}$)
(1)每天生产量x为多少时,利润L(x)有最大值,并求出最大值;
(2)每天生产量x为多少时,平均利润P(x)有最大值,并求出最大值;
(3)由于经济危机,该厂进行了裁员导致该厂每天生产的最大规模的产品量降为160件,那么每天生产量x为多少时,平均利润P(x)有最大值,并求出最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦点和短轴的一个端点构成边长为4的正三角形.
(1)求椭圆C的方程;
(2)过右焦点F2的直线l与椭圆C相交于A、B两点,若$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}B}$,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与直线x=$\frac{{a}^{2}}{c}$交于点M,双曲线C的离心率e=$\frac{\sqrt{6}}{2}$,F是其右焦点,且|MF|=1.
(Ⅰ)求双曲线C的方程;
(Ⅱ)过点A(0,1)的直线l与双曲线C的右支交于不同两点P、Q,且P在A、Q之间,若$\overrightarrow{AP}$=λ$\overrightarrow{AQ}$且$λ≥\frac{1}{3}$,求直线l斜率k的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

11.函数$f(x)=\left\{\begin{array}{l}3×{2^x}-24,0≤x≤10\\-{2^{x-5}}+126,10<x≤20\end{array}\right.$的零点不可能在下列哪个区间上(  )
A.(1,4)B.(3,7)C.(8,13)D.(11,18)

查看答案和解析>>

同步练习册答案