相关习题
 0  237793  237801  237807  237811  237817  237819  237823  237829  237831  237837  237843  237847  237849  237853  237859  237861  237867  237871  237873  237877  237879  237883  237885  237887  237888  237889  237891  237892  237893  237895  237897  237901  237903  237907  237909  237913  237919  237921  237927  237931  237933  237937  237943  237949  237951  237957  237961  237963  237969  237973  237979  237987  266669 

科目: 来源: 题型:解答题

3.如图在边长为4的正方形铁皮的四角切去相等的正方形,在把它的边沿虚线折起,做成一个无盖的方底盒子.
问:切去的小正方形边长为多少时,盒子容积最大?最大容积V1是多少?

查看答案和解析>>

科目: 来源: 题型:解答题

2.设函数f(x)=$\frac{\sqrt{2{x}^{2}+1}}{\sqrt{5-x}}$+$\sqrt{x-2}$的定义域为集合A,且B={x|-3<x-4<4},C={x|x<a-1或x>a}.
(1)求A和(∁RA)∩B;
(2)若A∪C=R,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,
∠ABC=60°,E,F分别是BC,PC的中点.
(1)证明:异面直线AE与PD所的角;
(2)若PD与平面ABCD所成角为45°,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知{$\frac{1}{{a}_{n}}$}是等差数列,且a1=1,a4=4,则a10=(  )
A.-$\frac{4}{5}$B.-$\frac{5}{4}$C.$\frac{4}{13}$D.$\frac{13}{4}$

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,$AC=BC=\frac{1}{2}A{A_1}=2$,点D是棱AA1的中点.
(Ⅰ)证明:平面BDC1⊥平面BDC;
(Ⅱ)求三棱锥C1-BDC的体积.

查看答案和解析>>

科目: 来源: 题型:选择题

19.设F为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦点,若OF的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为$\frac{1}{2}|OF|$,则双曲线的离心率为(  )
A.$2\sqrt{2}$B.$\frac{{2\sqrt{3}}}{3}$C.$2\sqrt{3}$D.3

查看答案和解析>>

科目: 来源: 题型:选择题

18.自圆C:(x-3)2+(y+4)2=4外一点P(x,y)引该圆的一条切线,切点为Q,切线的长度等于点P到原点O的长,则点P轨迹方程为(  )
A.8x-6y-21=0B.8x+6y-21=0C.6x+8y-21=0D.6x-8y-21=0

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知函数$f(x)=|{x-a}|+\frac{1}{2a}({a≠0})$
(1)若不等式f(x)-f(x+m)≤1恒成立,求实数m的最大值;
(2)当a<$\frac{1}{2}$时,函数g(x)=f(x)+|2x-1|有零点,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

16.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=\sqrt{2}cosφ\\ y=sinφ\end{array}\right.$,(其中φ为参数),曲线${C_2}:{x^2}+{y^2}-2y=0$,以原点O为极点,x轴的正半轴为极轴建立极坐标系,射线l:θ=α(ρ≥0)与曲线C1,C2分别交于点A,B(均异于原点O)
(1)求曲线C1,C2的极坐标方程;
(2)当$0<a<\frac{π}{2}$时,求|OA|2+|OB|2的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,在几何体ABCDEF中,四边形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)证明:平面ACF⊥平面BEFD.
(2)若$cos∠BAD=\frac{1}{5}$,求几何体ABCDEF的体积.

查看答案和解析>>

同步练习册答案