相关习题
 0  237823  237831  237837  237841  237847  237849  237853  237859  237861  237867  237873  237877  237879  237883  237889  237891  237897  237901  237903  237907  237909  237913  237915  237917  237918  237919  237921  237922  237923  237925  237927  237931  237933  237937  237939  237943  237949  237951  237957  237961  237963  237967  237973  237979  237981  237987  237991  237993  237999  238003  238009  238017  266669 

科目: 来源: 题型:选择题

3.两个袋中各装有编号为1,2,3,4,5的5个小球,分别从每个袋中摸出一个小球,所得两球编号数之和小于5的概率为(  )
A.$\frac{1}{5}$B.$\frac{7}{25}$C.$\frac{6}{25}$D.$\frac{2}{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

2.设集合A={x|y=lg(x-3)},B={y|y=2x,x∈R},则A∪B等于(  )
A.B.RC.{x|x>1}D.{x|x>0}

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=$\sqrt{6}$,DE=3,∠BAD=60°,G为BC的中点.
(Ⅰ)求证:FG∥平面BED;
(Ⅱ)求证:平面BED⊥平面AED;
(Ⅲ)求直线EF与平面BED所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

20.在三角形ABC中,AD⊥BC,AD=1,BC=4,点E为AC的中点,$\overrightarrow{DC}•\overrightarrow{BE}$=$\frac{15}{2}$,则AB的长度为$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

19.一个几何体,其三视图如图所示,则该几何体的体积为$\frac{\sqrt{2}}{6}π$+$\frac{1}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知a=2ln3,b=2lg2,c=($\frac{1}{4}$)${\;}^{lo{g}_{\frac{1}{3}}\frac{1}{2}}$,则(  )
A.c>a>bB.a>b>cC.a>c>bD.b>c>a

查看答案和解析>>

科目: 来源: 题型:选择题

17.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点F是抛物线y2=8x焦点,两曲线的一个公共点为P,且|PF|=5,则该双曲线的离心率为(  )
A.2B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=$\sqrt{x}$|x-a|,a∈R,g(x)=16x3+mx2-15x-2,且g(2)=0.
(Ⅰ)求函数g(x)的极值;
(Ⅱ)若函数f(x)单调函数,求实数a的取值范围;
(Ⅲ)设a>0,若存在实数t(t>a),当x∈[0,t]时函数f(x)的值域为[0,$\frac{t}{2}$],求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2$\sqrt{2}$,PA=2,BC=4$\sqrt{2}$.
(Ⅰ)若E为PB的中点,证明:AE∥平面PCD;
(Ⅱ)求证:AB⊥PC
(Ⅲ)若F为PD的中点,求二面角F-AC-D的平面角的大小.

查看答案和解析>>

科目: 来源: 题型:填空题

14.一个口袋内装有大小相同的红球,白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出红球的概率为0.2.

查看答案和解析>>

同步练习册答案